

Contact: 03004003666

1
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

Syllabus Content:

19.1 Abstraction

 Show understanding of and use Abstract Data Types (ADT

Notes and guidance

o Write algorithms to find an item in each of the following:

 linked list

 binary tree

o Write algorithms to insert an item into each of the following:

 Stack

 Queue

 linked list

 binary tree

o Write algorithms to delete an item from each of the following:

 Stack

 Queue

 linked list

o Show understanding that a graph is an example of an ADT.

o Describe the key features of a graph and justify its use for a given situation

Candidates will not be required to write code for this structure

 Show how it is possible for ADTs to be implemented from another ADT

o Describe the following ADTs and demonstrate how they can be implemented

from appropriate builtin types or other ADTs:

 stack, queue, linked list, dictionary, binary tree

 Show understanding that different algorithms which perform the same task can be

compared by using criteria (e.g. time taken to complete the task and memory used)

Notes and guidance

o Including use of Big O notation to specify time and space complexity

Abstraction:
Abstraction is a process where you show only “relevant” data and “hide” unnecessary details of
an object from the user. Abstraction involves filtering out information that is not necessary to
solving the problem.

Consider your mobile phone, you just need to know what buttons are to be pressed to send a
message or make a call, What happens when you press a button, how your messages are sent,
how your calls are connected is all abstracted away from the user.

Abstraction is a powerful methodology to manage complex systems. Abstraction is
managed by well-defined objects and their hierarchical classification.

For example a car itself is a well-defined object, which is composed of several other
smaller objects like a gearing system, steering mechanism, engine, which are again

Contact: 03004003666

2
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

have their own subsystems. But for humans car is a one single object, which can be
managed by the help of its subsystems, even if their inner details are unknown.

Decomposition:
Decomposition means breaking tasks down into smaller parts in order to explain a process
more clearly.

Decomposition is another word for step-wise refinement.
In structured programming, algorithmic decomposition breaks a process down into well-
defined steps.

Pattern recognition
Pattern recognition means looking for patterns or common solutions to common problems and
exploiting these to complete tasks in a more efficient and effective way. There are many
standard algorithms to solve standard problems, such as insertion sort or binary search.

ADTs (Abstract Data Type):

An abstract data type is a collection of data. When we want to use an abstract data type, we
need a set of basic operations:

 create a new instance of the data structure
 find an element in the data structure
 insert a new element into the data structure
 delete an element from the data structure
 access all elements stored in the data structure in a systematic manner.

Abstract Data Types
Definition

An abstract data type is a type with associated operations, but whose representation is hidden.

The definition of ADT only mentions what operations are to be performed but not how these
operations will be implemented. It does not specify how data will be organized in memory and
what algorithms will be used for implementing the operations.

It is called “abstract” because it gives an implementation independent view. The process of
providing only the essentials and hiding the details is known as abstraction.

The user of data type need not know that data type is implemented, for example, we have been
using integer, float, char data types only with the knowledge with values that can take and
operations that can be performed on them without any idea of how these types are
implemented. So a user only needs to know what a data type can do but not how it will do it.

https://wiki.haskell.org/Type
https://www.geeksforgeeks.org/data-types-in-c/

Contact: 03004003666

3
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

We can think of ADT as a black box which hides the inner structure and design of the data type.

Now we’ll define the ADTs namely Stack ADT, Queue ADT, Linked List ADT, Binary Tree
ADT.

Stack ADT
A Stack contains elements of same type arranged in sequential order. All operations takes place
at a single end that is top of the stack and following
operations can be performed:

To make a stack, we pile items on top of each other. The
item that is accessible is the one on top of the stack. If we
try to find an item in the stack and take it out, we are likely
to cause the pile of items to collapse.

The BaseofstackPointer will always point to the first slot
in the stack. The TopOfStackPointer will point to the last
element pushed onto the stack.

When an element is removed from the stack, the
TopOfStackPointer will decrease to point to the element
now at the top of the stack.

Figure below shows how we can represent a stack when we have added three items in this
order: 1, 2, 3 push() adds the item in stack and pop() picks the item from stack.

The 'STACK' is a Last-In First-Out (LIFO) List. Only the last item in the stack can be accessed directly.

push() – Insert an element at one end of the stack called top.
pop() – Remove and return the element at the top of the stack, if it is not empty.
peek() – Return the element at the top of the stack without removing it, if the stack is not empty.
size() – Return the number of elements in the stack.
isEmpty() – Return true if the stack is empty, otherwise return false.
isFull() – Return true if the stack is full, otherwise return false.

https://www.geeksforgeeks.org/stack-data-structure-introduction-program/
https://www.geeksforgeeks.org/queue-set-1introduction-and-array-implementation/
https://www.geeksforgeeks.org/queue-set-1introduction-and-array-implementation/
https://www.geeksforgeeks.org/queue-set-1introduction-and-array-implementation/

Contact: 03004003666

4
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

Contact: 03004003666

5
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

Stacks in VB

Stack Pop Operation

topPointer points to the top of stack

Stack Push Operation

Contact: 03004003666

6
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

Queue ADT

Queue is a linear data structure in which the insertion and deletion operations are performed at
two different ends. In a queue data structure, adding and removing of elements are performed
at two different positions.

The insertion is performed at one end and deletion is performed at other end. In a queue data
structure, the insertion operation is performed at a position which is known as 'rear' and the
deletion operation is performed at a position which is known as 'front'.

In queue data structure, the insertion and deletion operations are performed based on FIFO
(First In First Out) principle.
A Queue contains elements of same type arranged in sequential order. Operations takes place
at both ends, insertion is done at end and deletion is done at front. Following operations can be
performed:

enqueue() – Insert an element at the end of the queue.
dequeue() – Remove and return the first element of queue, if the queue is not empty.
peek() – Return the element of the queue without removing it, if the queue is not empty.
size() – Return the number of elements in the queue.
isEmpty() – Return true if the queue is empty, otherwise return false.
isFull() – Return true if the queue is full, otherwise return false.

Queue after inserting 25, 30, 51, 60 and 85.

From these definitions, we can clearly see that the definitions do not specify how these ADTs
will be represented and how the operations will be carried out. There can be different ways to
implement an ADT, for example, the List ADT can be implemented using arrays, or singly linked
list or doubly linked list. Similarly, stack ADT and Queue ADT can be implemented using arrays
or linked lists.

Contact: 03004003666

7
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

Contact: 03004003666

8
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

Contact: 03004003666

9
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

Queue Operations in VB:

Empty Queue with no items and variables, set to public for subroutine access.

Queue Enqueue (adding an item to queue)

Queue Dequeue (adding an item to queue)

Contact: 03004003666

10
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

Linked lists

Earlier we used an array as a linear list. In an Array (Linear list), the list items are stored in
consecutive locations. This is not always appropriate.

In Figure below, the data value in the node box represents the key field of that node. There are
likely to be many data items associated with each node. The arrows represent the pointers.

It does not show at which address a node is stored, so the diagram does not give the value of
the pointer, only where it conceptually links to.
Suppose StartPointer points to B, B points to D and D points to L, L Points to NULL

Add a node at the front: (A 4 steps process)
A new node, A, is inserted at the beginning of the list.
The content of startPointer is copied into the new node's pointer field and startpointer
is set to point to the new node, A.

Contact: 03004003666

11
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

Add a node after a given node:
We are given pointer to a node, and the new node is inserted after the given node.

To insert a new node, C, between existing nodes, Band D (Figure 23.10), we copy the
pointer field of node B into the pointer field of the new node, C. We change the pointer
field of node B to point to the new node, C.

Add a node at the end:
In Figure 23.07, a new node, P, is inserted at the end of the list. The pointer field of
node L points to the new node, P. The pointer field of the new node, P, contains the null
pointer.

Deleting the First node in the list:
To delete the first node in the list (Figure 23.08), we copy the pointer field of the node to
be deleted into StartPointer

Contact: 03004003666

12
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

Deleting the Last node in the list:
To delete the last node in the list (Figure 23.09), we set the pointer field for the previous
node to the null pointer.

Deleting a node within the list:
To delete a node, D, within the list (Figure 23.11), we copy the pointer field of the node
to be deleted, D, into the pointer field of node B.

 Remember that, in real applications, the data would consist of much more than a
key field and one data item.

 When list elements need reordering, only pointers need changing in a linked list.
In an Array (linear list), all data items would need to be moved.

 This is why linked lists are preferable to Arrays (linear lists).

 Linked lists saves time, however we need more storage space for the pointer
fields.

Using Linked Lists:

Contact: 03004003666

13
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

 We can store the linked list in an array of records. One record represents a
node and consists of the data and a pointer.

 When a node is inserted or deleted, only the pointers need to change. A
pointer value is the array index of the node pointed to.

 Unused nodes need to be easy to find.

 A suitable technique is to link the unused nodes to form another linked list: the
free list. Figure 23.12 shows our linked list and its free list.

 When an array of nodes is first initialised to work as a linked list, the linked list
will be empty.

 So the start pointer will be the null pointer.

 All nodes need to be linked to form the free list.

 Figure 23.13 shows an example of an implementation of a linked list before any
data is inserted into it.

Contact: 03004003666

14
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

We now code the basic operations discussed using the conceptual diagrams in Figures 23.05 to 23.12.

Create a new linked list
CONSTANT NullPointer=0 //NullPointer should be set to -1 if using array element with index O

TYPE ListNode // Declare record type to store data and pointer

DECLARE Data STRING

DECLARE Pointer INTEGER

ENDTYPE

DECLARE StartPointer : INTEGER // Declare start pointer to point to first item in list

DECLARE FreeListPtr : INTEGER // Declare free pointer to add data in free memory slot.

DECLARE List[l:7] OF ListNode

PROCEDURE InitialiseList

StartPointer NullPointer // set start pointer, start of list

FreeListPtr 1 // set starting position of free list

FOR Index 1 TO 6 // link all nodes to make free list

List[Index].Pointer Index + 1

NEXT

List[7].Pointer Null Pointer //last node of free list

END PROCEDURE

Create a new linked list in Visual Studio

Module Module1
 ' NullPointer should be set to -1 if using array element with index 0

 Const NULLPOINTER = -1 ' Declare record type to store data and pointer

 Structure ListNode

 Dim Data As String
 Dim Pointer As Integer
 End Structure

Contact: 03004003666

15
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

 Dim List(7) As ListNode

 Dim StartPointer As Integer
 Dim FreeListPtr As Integer

 Sub InitialiseList()
 StartPointer = NULLPOINTER ' set start pointer
 FreeListPtr = 0 ' set starting position of free list

 For Index = 0 To 7 'link all nodes to make free list
 List(Index).Pointer = Index + 1
 Next

 List(7).Pointer = NULLPOINTER 'last node of free list
 End Sub

Insert a new node into an ordered linked list

Contact: 03004003666

16
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

Insert a new node into an ordered linked list
DECLARE startpointer : INTEGER

DECLARE heapStartPointer : INTEGER

DECLARE itemAdd : INTEGER

DECLARE tempPointer : INTEGER

CONSTANT nullPointer = -1

PROCEDURE

PROCEDURE InsertNode(Newitem)

IF FreeListPtr <> NullPointer

THEN // there is space in the array

NewNodePtr FreeListPtr //take node from free list and store data item

List[NewNodePtr].Data Newitem

FreeListPtr List[FreeListPtr].Pointer

// find insertion point

ThisNodePtr StartPointer // start at beginning of list

WHILE ThisNodePtr <> NullPointer // while not end of list

AND List[ThisNodePtr].Data < Newitem

PreviousNodePtr ThisNodePtr //remember this node

//follow the pointer to the next node

ThisNodePtr List[ThisNodePtr].Pointer

ENDWHILE

IF PreviousNodePtr = StartPointer

THEN //insert new node at start of list

List[NewNodePtr].Pointer StartPointer

StartPointer NewNodePtr

ELSE //insert new node between previous node and this node

List[NewNodePtr].Pointer List[PreviousNodePtr].Pointer

List[PreviousNodePtr].Pointer NewNodePtr

ENDIF

ENDIF

END PROCEDURE

After three data items have been added to the linked list, the array contents are as

shown in Figure 23.14.

Contact: 03004003666

17
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

Insert a new node into an ordered linked list in Visual Studio:

Sub InsertNode(ByVal NewItem)

Dim TempPtr, NewNodePtr, PreviousNodePtr As Integer ' TemportatryPointer, NextNode

Pointer and PreviousPointer to Swap values of pointers

 If FreeListPtr <> NULLPOINTER Then ' there is space in the array, take node from

free list and store data item

 NewNodePtr = FreeListPtr

 List(NewNodePtr).Data = NewItem
 FreeListPtr = List(FreeListPtr).Pointer ' find insertion point

 PreviousNodePtr = NULLPOINTER

 TempPtr = StartPointer ' start at beginning of list

 Try
 Do While (TempPtr <> NULLPOINTER) And (List(TempPtr).Data < NewItem) '

while not end of list

 PreviousNodePtr = TempPtr ' remember this node follow the pointer to
the next node

 TempPtr = List(TempPtr).Pointer

 Loop
 Catch ex As Exception

 End Try

 If PreviousNodePtr = NULLPOINTER Then ' insert new node at start of list

 List(NewNodePtr).Pointer = StartPointer

 StartPointer = NewNodePtr

 Else : List(NewNodePtr).Pointer = List(PreviousNodePtr).Pointer ' insert new

node between previous node and this node

 List(PreviousNodePtr).Pointer = NewNodePtr
 End If

 Else : Console.WriteLine("no space for more data")

 End If
 End Sub

Contact: 03004003666

18
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

Find an element in an ordered linked list

FUNCTION FindNode(Dataitem) RETURNS INTEGER // returns pointer to node

CurrentNodePtr StartPointer //start at beginning of list

WHILE CurrentNodePtr <> NullPointer //not end of list

AND List[CurrentNodePtr].Data <> Dataitem // item not found

//follow the pointer to the next node

CurrentNodePtr List [CurrentNodePtr].Pointer

ENDWHILE

RETURN CurrentNodePtr // returns NullPointer if item not found

END FUNCTION

Finding an element Visual Studio Code:
Function FindNode(ByVal DataItem) As Integer ' returns pointer to node

Dim CurrentNodePtr As Integer
CurrentNodePtr = StartPointer ' start at beginning of list

Try
Do While CurrentNodePtr <> NULLPOINTER And List(CurrentNodePtr).Data <>
DataItem ' not end of list,item(Not found)

 ' follow the pointer to the next node
CurrentNodePtr = List(CurrentNodePtr).Pointer
Loop

Catch ex As Exception
Console.WriteLine("data not found")
End Try

Return (CurrentNodePtr) ' returns NullPointer if item not found
End Function

Delete a node from an ordered linked list

PROCEDURE DeleteNode(Dataitem)

ThisNodePtr StartPointer //start at beginning of list

WHILE ThisNodePtr <> NullPointer //while not end of list

AND List[ThisNodePtr].Data <> Dataitem //and item not found

PreviousNodePtr ThisNodePtr //remember this node

// follow the pointer to the next node

ThisNodePtr List[ThisNodePtr].Pointer

ENDWHILE

IF ThisNodePtr <> NullPointer //node exists in list

THEN

IF ThisNodePtr = StartPointer //first node to be deleted

THEN

StartPointer List[StartPointer].Pointer

ELSE

List[PreviousNodePtr] List[ThisNodePtr].Pointer

ENDIF

ENDIF

 List[ThisNodePtr].Pointer FreeListPtr

 FreeListPtr ThisNodePtr

END PROCEDURE

Contact: 03004003666

19
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

VB Code

Sub DeleteNode(ByVal DataItem)

 Dim ThisNodePtr, PreviousNodePtr As Integer

 ThisNodePtr = StartPointer

 Try ' start at beginning of list

Do While ThisNodePtr <> NULLPOINTER And List(ThisNodePtr).Data <> DataItem

' while not end of list and item not found

 PreviousNodePtr = ThisNodePtr ' remember this node

 ' follow the pointer to the next node

 ThisNodePtr = List(ThisNodePtr).Pointer

 Loop

 Catch ex As Exception

 Console.WriteLine("data does not exist in list")

 End Try

 If ThisNodePtr <> NULLPOINTER Then ' node exists in list

 If ThisNodePtr = StartPointer Then ' first node to be deleted

 StartPointer = List(StartPointer).Pointer

 Else : List(PreviousNodePtr).Pointer = List(ThisNodePtr).Pointer

 End If

 List(ThisNodePtr).Pointer = FreeListPtr

 FreeListPtr = ThisNodePtr

 End If

End Sub

Access all nodes stored in the linked list

PROCEDURE OutputAllNodes

CurrentNodePtr StartPointer //start at beginning of list

WHILE CurrentNodePtr <> NullPointer //while not end of list

OUTPUT List[CurrentNodePtr].Data //follow the pointer to the next node

CurrentNodePtr List[CurrentNodePtr].Pointer

ENDWHILE

ENDPROCEDURE

VB Code
Sub OutputAllNodes()

 Dim CurrentNodePtr As Integer

 CurrentNodePtr = StartPointer ' start at beginning of list

 If StartPointer = NULLPOINTER Then

 Console.WriteLine("No data in list")

 End If

 Do While CurrentNodePtr <> NULLPOINTER ' while not end of list

 Console.WriteLine(CurrentNodePtr & " " & List(CurrentNodePtr).Data)

' follow the pointer to the next node

 CurrentNodePtr = List(CurrentNodePtr).Pointer

 Loop

 End Sub

Contact: 03004003666

20
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

VB Program for Linked Lists
Module Module1

 ' NullPointer should be set to -1 if using array element with index 0

 Const NULLPOINTER = -1 ' Declare record type to store data and pointer
 Structure ListNode

 Dim Data As String

 Dim Pointer As Integer

 End Structure

 Dim List(7) As ListNode

 Dim StartPointer As Integer
 Dim FreeListPtr As Integer

 Sub InitialiseList()

 StartPointer = NULLPOINTER ' set start pointer

 FreeListPtr = 0 ' set starting position of free list

 For Index = 0 To 7 'link all nodes to make free list
 List(Index).Pointer = Index + 1

 Next

 List(7).Pointer = NULLPOINTER 'last node of free list

 End Sub

 Function FindNode(ByVal DataItem) As Integer ' returns pointer to node

 Dim CurrentNodePtr As Integer
 CurrentNodePtr = StartPointer ' start at beginning of list

 Try

 Do While CurrentNodePtr <> NULLPOINTER And List(CurrentNodePtr).Data <>
DataItem ' not end of list,item(Not found)

 ' follow the pointer to the next node

 CurrentNodePtr = List(CurrentNodePtr).Pointer

 Loop
 Catch ex As Exception

 Console.WriteLine("data not found")

 End Try
 Return (CurrentNodePtr) ' returns NullPointer if item not found

 End Function

 Sub DeleteNode(ByVal DataItem)

 Dim ThisNodePtr, PreviousNodePtr As Integer

 ThisNodePtr = StartPointer

 Try ' start at beginning of list

 Do While ThisNodePtr <> NULLPOINTER And List(ThisNodePtr).Data <> DataItem

' while not end of list and item not found

 PreviousNodePtr = ThisNodePtr ' remember this node

 ' follow the pointer to the next node

 ThisNodePtr = List(ThisNodePtr).Pointer

 Loop
 Catch ex As Exception

 Console.WriteLine("data does not exist in list")

 End Try

 If ThisNodePtr <> NULLPOINTER Then ' node exists in list

 If ThisNodePtr = StartPointer Then ' first node to be deleted

Contact: 03004003666

21
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

 StartPointer = List(StartPointer).Pointer
 Else : List(PreviousNodePtr).Pointer = List(ThisNodePtr).Pointer

 End If

 List(ThisNodePtr).Pointer = FreeListPtr

 FreeListPtr = ThisNodePtr
 End If

 End Sub

 Sub InsertNode(ByVal NewItem)

 Dim ThisNodePtr, NewNodePtr, PreviousNodePtr As Integer
 If FreeListPtr <> NULLPOINTER Then ' there is space in the array

 ' take node from free list and store data

item
 NewNodePtr = FreeListPtr

 List(NewNodePtr).Data = NewItem

 FreeListPtr = List(FreeListPtr).Pointer ' find insertion point

 PreviousNodePtr = NULLPOINTER
 ThisNodePtr = StartPointer ' start at beginning of list

 Try

 Do While (ThisNodePtr <> NULLPOINTER) And (List(ThisNodePtr).Data <
NewItem) ' while not end of list

 PreviousNodePtr = ThisNodePtr ' remember this node

 ' follow the pointer to the next node
 ThisNodePtr = List(ThisNodePtr).Pointer

 Loop

 Catch ex As Exception

 End Try
 If PreviousNodePtr = NULLPOINTER Then ' insert new node at start of list

 List(NewNodePtr).Pointer = StartPointer
 StartPointer = NewNodePtr

 Else : List(NewNodePtr).Pointer = List(PreviousNodePtr).Pointer
 ' insert new node between previous node and this node

 List(PreviousNodePtr).Pointer = NewNodePtr

 End If
 Else : Console.WriteLine("no space for more data")

 End If

 End Sub

 Sub OutputAllNodes()

 Dim CurrentNodePtr As Integer

 CurrentNodePtr = StartPointer ' start at beginning of list

 If StartPointer = NULLPOINTER Then

 Console.WriteLine("No data in list")

 End If
 Do While CurrentNodePtr <> NULLPOINTER ' while not end of list

 Console.WriteLine(CurrentNodePtr & " " & List(CurrentNodePtr).Data)

' follow the pointer to the next node
 CurrentNodePtr = List(CurrentNodePtr).Pointer

 Loop

 End Sub

Contact: 03004003666

22
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

 Function GetOption()

 Dim Choice As Char
 Console.WriteLine("1: insert a value")

 Console.WriteLine("2: delete a value")

 Console.WriteLine("3: find a value")

 Console.WriteLine("4: output list")
 Console.WriteLine("5: end program")

 Console.Write("Enter your choice: ")

 Choice = Console.ReadLine()
 Return (Choice)

 End Function

 Sub Main()

 Dim Choice As Char

 Dim Data As String
 Dim CurrentNodePtr As Integer

 InitialiseList()

 Choice = GetOption()
 Do While Choice <> "5"

 Select Case Choice

 Case "1"
 Console.Write("Enter the value: ")

 Data = Console.ReadLine()

 InsertNode(Data)
 OutputAllNodes()

 Case "2"

 Console.Write("Enter the value: ")

 Data = Console.ReadLine()
 DeleteNode(Data)

 OutputAllNodes()

 Case "3"
 Console.Write("Enter the value: ")

 Data = Console.ReadLine()

 CurrentNodePtr = FindNode(Data)
 Case "4"

 OutputAllNodes()

 Console.WriteLine(StartPointer & " " & FreeListPtr)
 For i = 0 To 7

 Console.WriteLine(i & " " & List(i).Data & " " &

List(i).Pointer)

 Next
 End Select

 Choice = GetOption()

 Loop

 End Sub

End Module

Contact: 03004003666

23
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

Trees Data Structure:
In the real world, we draw tree structures to represent hierarchies. For example, we can draw a
family tree showing ancestors and their children. A binary tree is different to a family tree
because each node can have at most two 'children'.

In computer science binary trees are used for different purposes.
In this chapter, you will use an ordered binary tree ADT as a binary search tree.

Tree Vocabulary:
The TREE is a general data structure that describes the relationship between data items or
'nodes'.
The parent node of a binary tree has only two child nodes.

 Each data item within a tree is called a node
 The highest data item in tree is called root or root node
 Below the root lie a number of other nodes. The root

is the parent of nodes immediately linked to it and
these are children of parent node.

 If node share common parent, they are sibling nodes
just like a family

Adding Nodes to a Tree:

Contact: 03004003666

24
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

Nodes are added to an ordered binary tree in a specific way:

 Start at the root node as the current node.

 Repeat
o If the data value is greater than the current node's data value, follow the

right branch.
o If the data value is smaller than the current node's data value, follow the

left branch.

 Until the current node has no branch to follow.

Add the new node in this position.
For example, if we want to add a new node with data value D to the binary tree in Figure
we execute the following steps:

1. Start at the root node.

2. D is smaller than F, so turn left.

3. D is greater than C, so turn right.

4. D is smaller than E, so turn left.

5. There is no branch going left from E, so we add D as a left child from E.

Contact: 03004003666

25
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

Create a new binary tree
CONSTANT NullPointer = 0 //NullPointer should be set to -1 if u sing a r ray element with
index O

//Declare record type to store data and pointers

TYPE TreeNode

DECLARE Data : STRING

DECLARE LeftPointer : INTEGER

DECLARE RightPointer : INTEGER

END TYPE

DECLARE RootPointer : INTEGER

DECLARE FreePtr : INTEGER

DECLARE Tree[l : 7] OF TreeNode

PROCEDURE InitialiseTree

RootPointer NullPointer //set start pointer

FreePtr 1 //set starting position of free list

FOR Index 1 TO 6 //link all nodes to make free list

Tree [Index].LeftPointer Index + 1

END FOR

Tree [7].LeftPointer NullPointer //last node of free list

END PROCEDURE

Insert a new node into a binary tree

PROCEDURE InsertNode(Newitem)

IF FreePtr <> NullPointer

THEN //there is space in the array

//take node from free list, store data item and set null pointers

NewNodePtr FreePtr

FreePtr Tree[FreePtr].LeftPointer

Tree[NewNodePtr].Data Newitem

Tree[NewNodePtr].LeftPointer NullPointer

Tree [NewNodePtr].RightPointer NullPointer

//check if empty tree

IF RootPointer = NullPointer

THEN //insert new node at root

RootPointer NewNodePtr

ELSE //find insertion point

ThisNodePtr <- RootPointer //start at the root of the tree

 WHILE ThisNodePtr <> NullPointer //while not a leaf node

PreviousNodePtr ThisNodePtr //remember this node

IF Tree[ThisNodePtr].Data > Newitem

THEN //follow left pointer

TurnedLeft TRUE

ThisNodePtr Tree[ThisNodePtr].LeftPointer

ELSE //follow right pointer

TurnedLeft FALSE

ThisNodePtr Tree [ThisNodePtr].RightPointer

ENDIF

 ENDWHILE

IF TurnedLeft = TRUE

THEN

Tree [PreviousNodePtr].Left Pointer NewNodePtr

Contact: 03004003666

26
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

ELSE

Tree[PreviousNodePtr].RightPointer NewNodePtr

ENDIF

ENDIF

ENDIF

END PROCEDURE

Finding a node in a binary tree

FUNCTION FindNode (Searchitem) RETURNS INTEGER //returns pointer to node

ThisNodePtr RootPointer //start at the root of the tree

WHILE ThisNodePtr <> NullPointer //while a pointer to follow

AND Tree[ThisNodePtr].Data <> Searchitem //and search item not found

IF Tree[ThisNodePtr].Data > Searchitem

THEN //follow left pointer

ThisNodePtr Tree [ThisNodePtr] .LeftPointer

ELSE //follow right pointer

ThisNodePtr Tree [ThisNodePtr].RightPointer

ENDIF

ENDWHILE

RETURN ThisNodePtr //will return null pointer if search item not found

END FUNCTION

Implementing a binary tree in VB

Module Module1

 ' NullPointer should be set to -1 if using array element with index 0

 Const NULLPOINTER = -1

 ' Declare record type to store data and pointer

 Structure TreeNode

 Dim Data As String

 Dim LeftPointer, RightPointer As Integer

 End Structure

 Dim Tree(7) As TreeNode

 Dim RootPointer As Integer

 Dim FreePtr As Integer

 Sub InitialiseTree()

 RootPointer = NULLPOINTER ' set start pointer

 FreePtr = 0 ' set starting position of free list

 For Index = 0 To 7 'link all nodes to make free list

 Tree(Index).LeftPointer = Index + 1

 Tree(Index).RightPointer = NULLPOINTER

 Tree(Index).Data = ""

 Next

 Tree(7).LeftPointer = NULLPOINTER 'last node of free list

 End Sub

 Function FindNode(ByVal SearchItem) As Integer

Contact: 03004003666

27
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

 Dim ThisNodePtr As Integer

 ThisNodePtr = RootPointer

 Try

 Do While ThisNodePtr <> NULLPOINTER And Tree(ThisNodePtr).Data <>

SearchItem

 If Tree(ThisNodePtr).Data > SearchItem Then

 ThisNodePtr = Tree(ThisNodePtr).LeftPointer

 Else : ThisNodePtr = Tree(ThisNodePtr).RightPointer

 End If

 Loop

 Catch ex As Exception

 End Try

 Return ThisNodePtr

 End Function

 Sub InsertNode(ByVal NewItem)

 Dim NewNodePtr, ThisNodePtr, PreviousNodePtr As Integer

 Dim TurnedLeft As Boolean

 If FreePtr <> NULLPOINTER Then ' there is space in the array

 ' take node from free list and store data item

 NewNodePtr = FreePtr

 Tree(NewNodePtr).Data = NewItem

 FreePtr = Tree(FreePtr).LeftPointer

 Tree(NewNodePtr).LeftPointer = NULLPOINTER ' check if empty

tree

 If RootPointer = NULLPOINTER Then

 RootPointer = NewNodePtr

 Else ' find insertion point

 ThisNodePtr = RootPointer

 Do While ThisNodePtr <> NULLPOINTER

 PreviousNodePtr = ThisNodePtr

 If Tree(ThisNodePtr).Data > NewItem Then

 TurnedLeft = True

 ThisNodePtr = Tree(ThisNodePtr).LeftPointer

 Else

 TurnedLeft = False

 ThisNodePtr = Tree(ThisNodePtr).RightPointer

 End If

 Loop

 If TurnedLeft Then

 Tree(PreviousNodePtr).LeftPointer = NewNodePtr

 Else : Tree(PreviousNodePtr).RightPointer = NewNodePtr

 End If

 End If

 Else Console.WriteLine("no spce for more data")

 End If

 End Sub

 Sub TraverseTree(ByVal RootPointer)

Contact: 03004003666

28
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

 If RootPointer <> NULLPOINTER Then

 TraverseTree(Tree(RootPointer).LeftPointer)

 Console.WriteLine(Tree(RootPointer).Data)

 TraverseTree(Tree(RootPointer).RightPointer)

 End If

 End Sub

 Function GetOption()

 Dim Choice As Char

 Console.WriteLine("1: add data")

 Console.WriteLine("2: find data")

 Console.WriteLine("3: traverse tree")

 Console.WriteLine("4: end program")

 Console.Write("Enter your choice: ")

 Choice = Console.ReadLine()

 Return (Choice)

 End Function

 Sub Main()

 Dim Choice As Char

 Dim Data As String

 Dim ThisNodePtr As Integer

 InitialiseTree()

 Choice = GetOption()

 Do While Choice <> "4"

 Select Case Choice

 Case "1"

 Console.Write("Enter the value: ")

 Data = Console.ReadLine()

 InsertNode(Data)

 TraverseTree(RootPointer)

 Case "2"

 Console.Write("Enter search value: ")

 Data = Console.ReadLine()

 ThisNodePtr = FindNode(Data)

 If ThisNodePtr = NULLPOINTER Then

 Console.WriteLine("Value not found")

 Else

 Console.WriteLine("value found at: " & ThisNodePtr)

 End If

 Console.WriteLine(RootPointer & " " & FreePtr)

 For i = 0 To 7

 Console.WriteLine(i & " " & Tree(i).LeftPointer & " " &

Tree(i).Data & " " & Tree(i).RightPointer)

 Next

 Case "3"

 TraverseTree(RootPointer)

 End Select

 Choice = GetOption()

 Loop

 End Sub

End Module

Contact: 03004003666

29
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

Graphs:

 A graph is a non-linear data structure consisting of nodes and edges.

 This is an ADT used to implement directed and undirected graphs.

 A graph consists of a set of nodes and edges that join a pair of nodes.

 If the edges have a direction from one node to the other it is a directed graph.

For example, a graph of the bus routes in a town could be as follows. The distance between
each bus stop in kilometres is shown on the graph.

We have already covered graphs in Chapter 18 Artificial Intelligence

Data Dictionary:
 A real-world dictionary is a collection of key–value pairs.

 The key is the term you use to look up the required value. For example, if you use an
English–French dictionary to look up the English word ‘book’, you will find the French
equivalent word ‘livre’.
 A real-world dictionary is organised in alphabetical order of keys.

 An ADT dictionary in computer science is implemented using a hash table (see Section
23.11), so that a value can be looked up using a direct-access method.

Contact: 03004003666

30
Email: majidtahir61@gmail.com www.majidtahir.com

P4 19.1) Abstraction, Algorithms and ADT’s
CS 9618 with Majid Tahir at

www.majidtahir.com

Big O notation:

A problem can be solved in different ways, with different
algorithms.
Clearly, we want to use time and memory efficiently.

 A way of comparing the efficiency of algorithms has
been devised using order of growth as a function of
the size of the input. \

 Big O notation is used to classify algorithms according to how their running time (or
space requirements) grows as the input size grows.

 The letter O is used because the growth rate of a function is also referred to as ‘order
of the function’. The worst-case scenario is used when calculating the order of growth
for very large data sets.

Consider the linear search algorithm.

 The worst case scenario is that the item searched for is the last item in the list.

 The longer the list, the more comparisons have to be made.

 If the list is twice as long, twice as many comparisons have to be made.

Generally, we can say the order of growth is linear.

We write this as O(n), where n is the size of the data set.

Computer Science AS & A Level Coursebook by Sylvia Langfield & Dave Duddell
https://www.geeksforgeeks.org/abstract-data-types/
https://www.geeksforgeeks.org/linked-list-set-2-inserting-a-node/
http://btechsmartclass.com/DS/U2_T7.html
http://www.teach-ict.com/as_as_computing/ocr/H447/F453/3_3_5/data_structures/miniweb/pg15.htm
https://www.geeksforgeeks.org/binary-tree-set-1-introduction/
https://www.thecrazyprogrammer.com/2017/08/difference-between-tree-and-graph.html
https://www.codeproject.com/Articles/4647/A-simple-binary-tree-implementation-with-VB-NET

https://www.dotnetperls.com/dictionary-vbnet To see complete Dictionary Codes

https://www.tutorialspoint.com/vb.net/vb.net_hashtable.htm

https://www.tutlane.com/tutorial/visual-basic/vb-hashtable

https://www.geeksforgeeks.org/abstract-data-types/
https://www.geeksforgeeks.org/linked-list-set-2-inserting-a-node/
http://btechsmartclass.com/DS/U2_T7.html
http://www.teach-ict.com/as_as_computing/ocr/H447/F453/3_3_5/data_structures/miniweb/pg15.htm
https://www.geeksforgeeks.org/binary-tree-set-1-introduction/
https://www.thecrazyprogrammer.com/2017/08/difference-between-tree-and-graph.html
https://www.codeproject.com/Articles/4647/A-simple-binary-tree-implementation-with-VB-NET
https://www.dotnetperls.com/dictionary-vbnet
https://www.tutorialspoint.com/vb.net/vb.net_hashtable.htm
https://www.tutlane.com/tutorial/visual-basic/vb-hashtable

