
Cambridge International AS & A Level

COMPUTER SCIENCE 9608/22

Paper 2 Fundamental Problem-solving and Programming Skills
 May/June 2020

SOLVED PRE-RELEASE MATERIAL by SIR MAJID TAHIR

TASK 1 – Structure charts

Describe a processing activity that can be represented by one main task with two or more sub-tasks.
The activity can relate to any scenario, but should include aspects of selection and iteration.

Activity examples may be taken from different areas, such as:

• school or college

• factory or workplace

• clubs or hobbies.

TASK 1.1

Consider how a problem is decomposed by splitting it into smaller parts.
Discuss the advantages of this approach.

ANSWER

Activity examples is taken from different areas, such as: School or Collage

Decomposition/Step wise refinement

 To make it easier to solve a bigger problem, we break the problem into smaller steps.

 These might need breaking down further until the steps are small enough to solve

 For a solution to a problem to be programmable, we need to break down the steps of the
solution into the basic constructs of sequence, assignment, selection, repetition, input and
output.

 We can use a method called stepwise refinement to break down the steps of our outline
solution into smaller steps until it is detailed enough.

 A solution is to decompose the problem into sub-tasks.

 Each sub-task can be considered as a 'module' that is refined separately.

 Modules are procedures and functions.

 A procedure groups together a number of steps and gives them a name (an
identifier).

 We can use this identifier when we want to refer to this group of steps. When we
want to perform the steps in a procedure we call the procedure by its name

Advantages:

 This structured approach works for the development of both large and small computer
systems.

 When large computer systems are being developed this means that several programmers
can work independently to develop and test different subsystems/modules

 Multiple modules can be programmed at the same time.

 This reduces the development and testing time.

 Debugging the program is easier as separate modules can be checked instead of whole
program

 Modules can be tested separately and then combined in the complete program.

 More robust code.

TASK 1.2

Design a modular program to implement the activity described in TASK 1.
Produce a structure chart to represent the modular structure of the solution.
The structure chart should address:

• the sequence of module execution

• any module selection or iteration

• the parameters that are passed between the modules.

ANSWER

Activity examples is taken from different areas, such as: School or Collage

 name

 Names marks grade grade

 marks name total total

Until marks <= 100 And marks >= 0 True False

 True False

 True False

School Result

Input Data Calculate Result Output result

Marks >90

grade A*
Marks >80

grade A* Marks >70

grade B Need improvement

TASK 1.3

For each module, decide whether the solution should be implemented as a procedure or a function.
Justify your choices.

Produce pseudocode headers for each module.

ANSWER

BEGIN

 DECLARE name : STRING // Global variable declared to use in all procedures
 DECLARE marks: Integer

 PROCEDURE input_sub()
 OUTPUT("Enter your Name")
 INPUT name

 REPEAT

 OUTPUT("Enter your marks")
 INPUT marks
 UNTIL marks <= 100 And marks >= 0
 END PROCEDURE

 PROCEDURE Calculation()
 If marks >= 90 Then
 grade = "Grade A*"
 ElseIf marks >= 80 Then
 grade = "Grade A"
 ElseIf marks >= 70 Then
 grade = "Grade B"
 Else
 grade = "Improvement needed"
 End IF
 END PROCEDURE

 PROCEDURE output_sub()
 OUTPUT ("The Student " , name , " scored " , marks , " has " , grade)
 END PROCEDURE

 CALL input_sub()
 CALL Calculation()
 CALL output_sub()

END

Justification of choices

 Procedures are used in program

 Procedure may or may not return a value whereas function must return a value.

 Program doesn’t need value to be returned so it works perfectly with Procedures.

Find below same Program in VB Code and its Output

Module Module1

 Dim name As String
 Dim marks As Integer
 Dim grade As String
 Sub input_sub()
 Console.Clear()
 Console.WriteLine("Enter your name")
 name = Console.ReadLine
 Do
 Console.WriteLine("Enter your marks")
 marks = Console.ReadLine
 Loop Until marks <= 100 And marks >= 0

 End Sub

 Sub Calculation()
 If marks >= 90 Then
 grade = "Grade A*"
 ElseIf marks >= 80 Then
 grade = "Grade A"
 ElseIf marks >= 70 Then
 grade = "Grade B"
 Else
 grade = "Improvement needed"
 End If
 End Sub

 Sub output_sub()
 Console.Write("The Student " & name & " scored " & marks & " has " & grade)
 Console.ReadLine()
 End Sub

 Sub Main()
 input_sub()
 Calculation()
 output_sub()
 End Sub

End Module

TASK 2 – Algorithms, arrays and pseudocode

Declare an array to store multiple pieces of data for your activity in TASK 1. For example, a 1D array

of STRING could store the names of students in a class.

 DECLARE name [10] : STRING //Global variable declared to use in all procedures
 DECLARE marks[10] : Integer

 PROCEDURE input_sub()

FOR count = 1 to 10
 OUTPUT("Enter your Name")

 INPUT name(count)
 NEXT count

Rest of program will be same way using One-Dimensional Array and For Loop

TASK 2.1

Design an algorithm to search for a specific value in the array and output the array index where the

value is found.

Consider the differences between algorithms that search for a single rather than multiple instances of

the value.

Document the algorithm using:

• structured English

• a program flowchart

• pseudocode.

TASK 2.2

Design an algorithm to manipulate data in the array, for example by sorting.

Document the algorithm as in TASK 2.1.

TASK 3 – Programs containing several components

A library maintains a list of books. The list is saved in a text file, where each line of the file represents

one book.

TASK 3.1

Consider the information that should be included in the text file other than the title and the author.

TASK 3.2

Consider that this is a text file, which means that all information will be saved in STRING format.

Consider the implications of storing numeric information, such as the number of copies of each book.

Define the format of each line of the file so that each piece of information may be easily extracted.

© UCLES 2020 9608/22/PRE/M/J/20

5

TASK 3.3

Design a program in pseudocode that has a menu-driven interface and will perform the following

tasks:

1. Add a new book to the text file. Include validation of the different pieces of information as

appropriate.

2. Search for books written by a given author. Output the title of any books found, or a suitable

message if no books by the given author are found.

3. End the program.

TASK 3.4 – Writing program code

Convert your pseudocode into program code.

TASK 3.5 – Testing

Consider how the program produced in TASK 3.4 may be tested.

TASK 4 – Algorithm modification

Additional information needs to be saved for each book, such as a publication date.

An additional task is needed to create a new file from the original file. The task will prompt the user to

input the additional information for each book.

Consider possible validation of the additional information.

Write program code for the additional task.

© UCLES 2020 9608/22/PRE/M/J/20 [Turn over

6

Appendix

Built-in functions (pseudocode)

Each function returns an error if the function call is not properly formed.

MID(ThisString : STRING, x : INTEGER, y : INTEGER) RETURNS

STRING returns a string of length y starting at position x from ThisString

Example: MID("ABCDEFGH", 2, 3) returns "BCD"

LENGTH(ThisString : STRING) RETURNS INTEGER

returns the integer value representing the length of ThisString

Example: LENGTH("Happy Days") returns 10

LEFT(ThisString : STRING, x : INTEGER) RETURNS STRING

returns leftmost x characters from ThisString

Example: LEFT("ABCDEFGH", 3) returns "ABC"

RIGHT(ThisString : STRING, x : INTEGER) RETURNS STRING

returns rightmost x characters from ThisString

Example: RIGHT("ABCDEFGH", 4) returns "EFGH"

INT(x : REAL) RETURNS INTEGER

returns the integer part of x

Example: INT(27.5415) returns 27

NUM_TO_STRING(x : REAL) RETURNS STRING

returns a string representation of a numeric value. Note:

This function will also work if x is of type INTEGER

Example: NUM_TO_STRING(87.5) returns "87.5"

STRING_TO_NUM(x : STRING) RETURNS REAL

returns a numeric representation of a string.
Note: This function will also work if x is of type CHAR

Example: STRING_TO_NUM ("23.45") returns 23.45

Operators (pseudocode)

Operator Description

& Concatenates (joins) two strings.
Example: "Summer" & " " & "Pudding" produces "Summer Pudding"

AND

Performs a logical AND on two Boolean values.

Example: TRUE AND FALSE produces FALSE

OR

Performs a logical OR on two Boolean values.

Example: TRUE OR FALSE produces TRUE
© UCLES 2020 9608/22/PRE/M/J/20

7

BLANK PAGE

© UCLES 2020 9608/22/PRE/M/J/20

8

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every

reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the

publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer- related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge

Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download

at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of

Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2020 9608/22/PRE/M/J/20

