Genetic Veterinary Sciences®, Inc.

Genetic Disease Testing the Boykin Spaniel

Casey Carl, DVM- Associate Medical Director BSCBAA Genetics and Health Conversation Aug 20, 2020

Topic Outline

- Inheritance- Recessive
- Disease Testing-
 - Collie Eye Anomaly
 - Degenerative Myelopathy
 - Exercise-Induced Collapse
 - Progressive Retinal Atrophy, Cone Rod Dystrophy 4
- Inheritance- Dominant
- Disease testing-
 - Intervertebral Disc Disease/Chondrodystrophy (IVDD/CDDY) and Chondrodysplasia (CDPA)

Inheritance Patterns

- Recessive
- Dominant

Inheritance Patterns

- Recessive
- Dominant

- Recessive diseases- Dog must inherit two copies of the associated genetic mutation (one from each parent) in order to develop the disease
- Dogs with only a single copy of the mutation are considered asymptomatic carriers
- Carriers or affected dogs can produce affected puppies if bred with another dog with the same genetic mutation

Collie Eye Anomaly

- ** NHEJ1 Gene Recessive with variable expressivity
- Congenital bilateral eye disease also known as choroidal hypoplasia (CH)
- May not be seen on eye exam after about 12 weeks of age in mild cases- "go normal"
- More common to be mildly affected than severely affected
- Common signs
 - Underdevelopment of choroid- Layer of eye supplying blood and nutrients
 - Focal lack of pigmentation in retina
 - Abnormal blood vessels
 - Coloboma of optic disc
 - Retinal folds
 - Bleeding in eye
 - Detached retina
 - Vision deficits or blindness

Degenerative Myelopathy

- SOD1 gene- Recessive with incomplete penetrance
- Late-onset, progressive neurological disease-Average age of onset is 6 to 10 years of age.
- Common signs:
 - Hindlimb weakness- Trouble standing up and using stairs
 - Abnormal gait
 - Dragging hind toenails/feet and abnormal limb placement
 - Progresses over 6 months to 2 years to also include the front limbs and other neurological pathways
 - Dogs with end stage DM often develop incontinence and respiratory failure

Exercise-Induced Collapse

- DNM1 gene- Recessive with variable expressivity
- Neurological disease resulting in collapsing episodes associated with exercise
- Common signs:
 - Wobbly, uncoordinated gait after 5 to 20 minutes of exercise. Often most obvious in hind end. May drag hind limbs for short time
 - Typically remain alert and are not in pain
 - Occasionally dogs may experience confusion, loss of consciousness, seizures, or in rare circumstances, death
 - Dogs typically recover within 30 minutes and are normal between episodes
 - Risk to dogs swimming or performing other activities

PRA- Cone-Rod Dystrophy 4

- ** RPGRIP1 gene- Recessive with incomplete penetrance
- Degenerative retinal disease with wide age of onset range- Reported from 1 to 15 years of age.
- Variable progression rate
- Common signs:
 - Vision deficits up to complete blindness
 - Significant variation in age of onset and progression

Boykin Spaniel Panel

- How common are the mutations tested for in the Boykin Spaniel Panel?
- We don't know the specific frequency or distribution of these mutations in the general Boykin population
- PPG test results (as of 8/17/20):

	Carrier	At risk/Affected
Collie Eye Anomaly	41.6%	4.2%
Degenerative Myelopathy	22.2%	1.1%
Exercise-Induced Collapse	21.8%	1.2%
Progressive Cone-Rod Dystrophy 4	3.4%	None

Inheritance Patterns

- Recessive
- Dominant

Inheritance Patterns

- Recessive
- Dominant

Dominant diseases- only one copy of the associated genetic variant needed to develop the disease or increase risk of disease

CDDY, CDPA, and IVDD

- Two known genetic mutations associated with shortened limbs in dogs
- A portion of the *FGF4* gene has been duplicated and inserted in two aberrant locations; one on chromosome 12 (CFA12) and one on chromosome 18 (CFA18)
- Dogs inheriting the CFA12 mutation display shorter limbs due to chondrodystrophy (CDDY), and approximately 5 to 15 times increased risk of IVDD Type I
- Dogs inheriting the CFA18 mutation display shorter limbs due to chondrodysplasia (CDPA), but are not at an increased risk of IVDD

CDDY, CDPA, and IVDD

- Type II IVDD- Age related type of IVDD
 - Age related changes to IVDs
 - Older dogs- >6 years common
 - Bulging/herniation into spinal cord
 - Acute flare ups on chronic disease
 - Pain, neurological dysfunction, weakness
 - Surgery rarely indicated
- Type I IVDD-
 - Associated with CFA12 FGF4 insertion
 - IVD degeneration begins before one year of age
 - Younger Dogs- 3 to 7 years common
 - Calcification of nucleus pulposus and replacement with chondrocytes
 - Progressive weakening of annulus fibrosus
 - Violent herniations into spinal cord
 - Severe acute pain, neurological dysfunction, weakness, paralysis
 - Surgery often indicated

CDDY, CDPA, IVDD

CDDY, CDPA, and IVDD

- Breeding to avoid IVDD must address two issues:
 - Potential loss of genetic diversity
 - Meeting breed standard leg length

Genetic Bottleneck- Diversity Loss

- Dogs are excluded from breeding- Same effect as them dying before reproducing
- Population is repopulated with limited number of dogs→Less genetically diverse population
- New population more closely related and more likely to share the same disease-associated recessive mutations
- Potential for increase in MANY OTHER recessive diseases, shortened lifespan, decreased litter sizes

Breeding Strategies- CDDY/IVDD

- Frequency of each mutation varies from breed to breed-
 - On average, each Boykin spaniel carries one copy of CFA12 insertion*
- Slow removal of CFA12 insertion over a few generations would be preferable in most cases
 - Dogs with 1 copy of CFA12 insertion could be bred to dogs that are clear of the CFA12 insertion- 50% clear pups
 - If a clear dog cannot be found, may need to breed to other CFA12 carriers to start getting clear dogs- 25% clear pups, but 25% also have two copies of the mutation- Less desirable

IVDD- FGF4 CFA12: Dominant

IVDD- FGF4 CFA12: Dominant

Breeding Strategies- CDPA

- Increase in leg length associated with removal of the CFA12 mutation may be undesirable
- In some breeds, breeders may be able to breed away from the CFA12 (CDDY/IVDD) insertion and select for the CFA18 (CDPA) insertion:
 - Maintain shortened legs
 - Reduce risk of IVDD
- CFA18 (CDPA)- No report of the mutation frequency in Boykin spaniels

Questions?

Contact Casey at PPG

- Phone: 509-483-5950 (Mon. to Fri.; 8 am to 5 pm Pacific time)
- Email: ccarl@pawprintgenetics.com
- Facebook: https://www.facebook.com/caseyat.ppg

Thank you for inviting me!

