
Report on Decision Tree and Random 
Forest Classifier Implementation 
Introduction 
This report presents a comprehensive overview of the Python script developed to implement and utilize 

Decision Tree and Random Forest classifiers for classification tasks. The script is designed for educational 

purposes, offering insights into the construction, training, and prediction phases of these popular 

machine learning models. 

Design Principles 
Modularity 

• Objective: To ensure each component of the script (data handling, model building, training, 

prediction, and evaluation) is self-contained and easily understandable. 

• Implementation: Classes and methods are distinctly defined for specific functionalities. 

Flexibility 

• Objective: To allow users to experiment with different model configurations and datasets. 

• Implementation: Parameters such as model type, tree depth, and number of trees are 

configurable. 

Usability 

• Objective: To make the script easily executable with minimal setup. 

• Implementation: Command-line interface with clear argument requirements and error handling. 

Educational Value 

• Objective: To provide a tool that illustrates fundamental concepts in machine learning. 

• Implementation: Inclusion of both basic (Decision Tree) and advanced (Random Forest) models, 

with internal processes (like information gain calculation) made explicit in the code. 

User Requirements Specification (URS) 
Functional Requirements 

1. Data Input and Output: 

• Users must be able to input their dataset in a simple text format. 

• The script should output the classification results and accuracy. 

2. Model Configuration: 



• Users must have the option to select between Decision Tree and Random Forest models. 

• Users should be able to configure parameters like maximum depth and number of trees. 

3. Model Training and Prediction: 

• The script must provide functionality to train the models on the provided dataset and 

use the trained models to make predictions. 

4. Performance Evaluation: 

• The script should evaluate and display the model's performance in terms of classification 

accuracy. 

Non-Functional Requirements 

1. Ease of Use: 

• The script should be user-friendly and executable with basic Python knowledge. 

2. Performance: 

• The models should be optimized for efficient training and prediction on standard 

computing hardware. 

3. Reproducibility: 

• Users should be able to reproduce results through controlled randomness. 

4. Error Handling and Validation: 

• The script should include basic error handling for data input and invalid operations. 

5. Documentation: 

• Comprehensive documentation, including comments within the script and a README 

file, should be provided for ease of understanding and use. 

 

Methodology 
The methodology employed in the Python script for implementing the Decision Tree and Random Forest 

classifiers encompasses several key components, including data handling, model construction, training, 

prediction, and performance evaluation. Each aspect of the methodology is detailed below. 

Data Handling 
Data Loading 

• Function: load_data(file_path) 

• Description: This function loads the dataset from a given file path. The data format expected is 

plain text, where each line represents a sample. Features are separated by spaces, with the last 

value being the class label. 



• Error Handling: Includes checks for file existence and general loading errors. 

Data Preparation 

• Process: The data is divided into features (X) and labels (y), where X contains all elements except 

the last in each line, and y contains the last element (class label). 

Model Construction 
Decision Tree 

• Class: DecisionTree 

• Key Components: 

• Initialization: The constructor (__init__) allows for setting optimization flags and 

maximum depth. 

• Tree Building: The train method invokes _build_tree, which recursively splits the data to 

construct the tree based on information gain. 

Random Forest 

• Class: RandomForest 

• Key Components: 

• Initialization: Specifies the number of trees (n_trees) and the maximum depth. 

• Bootstrap Sampling: The bootstrap_sample method creates samples for training 

individual trees. 

• Tree Training: Each tree in the forest is trained on a bootstrap sample of the data. 

Model Training 
Decision Tree Training 

• Process: Involves splitting the dataset at each node based on the feature that provides the 

highest information gain. 

Random Forest Training 

• Process: Each tree is trained independently on a different bootstrap sample of the dataset. 

Prediction 
Decision Tree Prediction 

• Method: predict 

• Process: Traverses the tree for each instance in the test dataset, making decisions based on the 

trained nodes. 

Random Forest Prediction 

• Method: predict 



• Process: Aggregates predictions from all trees in the forest and determines the final output 

based on majority voting. 

Performance Evaluation 
Accuracy Calculation 

• Process: The script evaluates the model's performance by calculating the accuracy, defined as 

the ratio of correct predictions to total predictions. 

• Output: The classification accuracy and individual predictions with their respective true labels 

are printed. 

Methodological Considerations 

• Randomness: The script allows setting a random seed for reproducibility, which is crucial in the 

random forest’s bootstrap sampling and decision tree's feature selection (when non-optimized). 

• Modularity: The script is designed with distinct classes and methods for each functionality, 

allowing ease of understanding and potential for extension. 

• Error Handling: Basic error handling is implemented for robustness in data loading and 

command-line argument processing. 

Conclusion 
The methodology behind this script is comprehensive and modular, covering all aspects of implementing 

and utilizing Decision Tree and Random Forest classifiers. It provides a solid foundation for 

understanding these models, emphasizing key machine learning concepts such as information gain, 

bootstrap sampling, and ensemble prediction. 

 

Script Overview 
The script comprises two main components: a Decision Tree and a Random Forest classifier. Each class 

within the script has distinct functionalities tailored to their respective models. 

Decision Tree Classifier 

• Purpose: To build and utilize a decision tree for classification. 

• Key Methods: 

• __init__: Initializes the decision tree, with options for optimization and maximum depth. 

• train: Builds the tree using the training data. 

• predict: Makes predictions on test data. 

Random Forest Classifier 

• Purpose: To construct and use a random forest, an ensemble of decision trees, for classification. 

• Key Methods: 



• __init__: Initializes the random forest with a specified number of trees. 

• fit: Trains each tree on a bootstrap sample of the data. 

• predict: Predicts the output using the majority vote from all trees. 

Data Handling 

• The script is capable of loading data from specified file paths. 

• The data format expected is plain text with each line representing a sample. The last value on 

each line is the class label, and the preceding values are the features. 

Usage 
The script supports command-line interaction, requiring the following arguments: 

1. Training File Path: Path to the training data file. 

2. Test File Path: Path to the test data file. 

3. Model Option: One of optimized, randomized, forest3, or forest15. 

4. Random State (Optional): For reproducibility of results. 

Error Handling and Randomness Control 

• Basic error handling for file operations and argument parsing is included. 

• Random seeds can be set to ensure reproducibility. 

Performance Evaluation 

• The script evaluates the performance of the model by calculating the accuracy, defined as the 

ratio of correct predictions to total predictions. 

• The script outputs the classification accuracy and individual predictions with their respective 

true labels. 

Limitations and Considerations 

• The performance and accuracy of the script are dependent on the quality and characteristics of 

the input dataset. 

• The script is designed primarily for educational purposes and may require modification for use in 

different contexts or with other datasets. 

 

Conclusion 
The developed Python script effectively demonstrates the implementation of Decision Tree and Random 

Forest classifiers. It serves as a valuable tool for educational and research purposes in the field of 

machine learning, particularly in understanding and applying these models for classification tasks. The 



script’s modular design and command-line interface make it accessible for users with varying levels of 

expertise in Python programming. 

 


