embark **DNA Test Report** Test Date: July 25th, 2023 embk.me/milo6989 ### **BREED MIX** French Bulldog: 100.0% ### **GENETIC STATS** Predicted adult weight: **33 lbs**Life stage: **Puppy**Based on your dog's date of birth provided. ## **TEST DETAILS** Kit number: EM-66315152 Swab number: 31220610107287 # embark DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 #### **Fun Fact** Despite not being the sharpest knives in the drawer, it is rumored that a French Bulldog, named Princess Jacqueline, was able to understand 20 distinct words. #### FRENCH BULLDOG French Bulldogs, affectionately known by their many fans as Frenchies, are an immensely popular and well-known breed of dog. As their name implies, they are native to France and are the result of a mix between English Bulldogs and local dogs in Paris. They are very popular around the world, earning their place as the 4th most popular dog in the United Kingdom and the 9th most popular dog in the United States. Despite the fact that they are the descendants of ancient Mastiffs, French Bulldogs don't retain much of that noble and tough ancestry. They were really bred over the years to make exceptional lap dogs and companion animals. During the 1700s and 1800s, they were well loved by European aristocrats and nobility who prized them for their unique look and affectionate and goofy personalities. They are often featured in paintings of the era, and they can be seen sitting regally upon the laps of their noble owners. Because they were bred to be companion dogs, French Bulldogs need lots of love. If left alone, they will become anxious and unhappy. They make up for their lowerscoring cognitive ability with their stellar personalities, loving nature, and love of fun. Because they are rather calm, love to snuggle, and don't require excessive amounts of exercise, they make excellent apartment dogs. As a bonus, they also don't bark very much. French Bulldogs get along well with other pets, including other dogs, and are marvelous with children. As with most short-nosed breeds, they require a little bit of extra care and attention, especially in hot weather. They cannot tolerate the heat and will suffer greatly—they can become very ill and can even die if left in hot weather for too long. They also need to be monitored while exercising, as their short noses can make it difficult for them to catch their breath if they are overexerted. French Bulldogs make great parents but poor reproducers. They often need to be artificially inseminated and frequently require cesarean births. Because of these costs associated with having a litter, expect to pay more money for a French Bulldog than other pure bred dogs. It is very important to choose a breeder carefully—a reputable breeder will health test their dogs, and they will be able to show prospective owners #### RELATED BREEDS **Bulldog** Sibling breed Boxer Cousin breed Bull Terrier Cousin breed DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ### **MATERNAL LINE** Through milo's mitochondrial DNA we can trace his mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map. #### **HAPLOGROUP: A1e** This female lineage likely stems from some of the original Central Asian wolves that were domesticated into modern dogs starting about 15,000 years ago. It seemed to be a fairly rare dog line for most of dog history until the past 300 years, when the lineage seemed to "explode" out and spread quickly. What really separates this group from the pack is its presence in Alaskan village dogs and Samoyeds. It is possible that this was an indigenous lineage brought to the Americas from Siberia when people were first starting to make that trip themselves! We see this lineage pop up in overwhelming numbers of Irish Wolfhounds, and it also occurs frequently in popular large breeds like Bernese Mountain Dogs, Saint Bernards and Great Danes. Shetland Sheepdogs are also common members of this maternal line, and we see it a lot in Boxers, too. Though it may be all mixed up with European dogs thanks to recent breeding events, its origins in the Americas makes it a very exciting lineage for sure! #### **HAPLOTYPE: A276** Part of the large A1e haplogroup, this haplotype has been spotted in village dogs in French Polynesia. Among breeds, it occurs in both small (French Bulldog, Miniature Schnauzers, Dachshunds) and large (Great Danes, Bullmastiffs) breeds. DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 #### **PATERNAL LINE** Through milo's Y chromosome we can trace his father's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map. #### HAPLOGROUP: D The D paternal lineage is very common in well-known populations of dogs. Breeds belonging to the D lineage likely have direct male ancestors that can be traced all the way back to the origin of domestic dogs themselves! One popular breed that commonly sports a D lineage is the Boxer. Boxers were developed in the late 19th century from Mastiff dogs, so it is no surprise that D is well represented among Mastiffs, Bulldogs, as well as Terriers. Intriguingly, D is also found among Lhasa Apsos, an ancient Tibetan breed, and Afghan Hounds. While the presence of this lineage in Polynesia or the New World can be chalked up to interbreeding with European dogs brought during voyages of discovery or later settlement, D is also well represented among village dog populations in the Middle East and Africa. If the fact that we find dogs bearing a D lineage in the Middle East (not to mention the large amount of diversity among Middle Eastern D lineage males) is any indication of ancient residence in that region, then the presence among #### **HAPLOTYPE: H7.1/6/7** Part of the D haplogroup, this haplotype occurs most frequently in mixed breed dogs. # embark DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 #### TRAITS: COAT COLOR TRAIT #### E Locus (MC1R) The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive e allele do not produce dark hairs at all, and will be "red" over their entire body. The shade of red, which can range from a deep copper to yellow/gold to cream, is dependent on other genetic factors including the Intensity loci. In addition to determining if a dog can develop dark hairs at all, the E Locus can give a dog a black "mask" or "widow's peak," unless the dog has overriding coat color genetic factors. Dogs with one or two copies of the Em allele usually have a melanistic mask (dark facial hair as commonly seen in the German Shepherd and Pug). Dogs with no copies of Em but one or two copies of the Eg allele usually have a melanistic "widow's peak" (dark forehead hair as commonly seen in the Afghan Hound and Borzoi, where it is called either "grizzle" or "domino"). No dark mask or grizzle (Ee) #### K Locus (CBD103) The K Locus K^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one K^B allele will usually have solid black or brown coats (or red/cream coats if they are ee at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the k^yk^y genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as K^Bk^y may be brindle rather than black or brown. More likely to have a patterned haircoat (k^yk^y) DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ### TRAITS: COAT COLOR (CONTINUED) TRAIT #### Intensity Loci LINKAGE Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of Intense Red Pigmentation will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of Intermediate Red Pigmentation will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with Dilute Red Pigmentation will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test. Any light hair likely white or cream (Dilute Red Pigmentation) #### A Locus (ASIP) The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats. Black/Brown and tan coat color pattern (a^ta) #### D Locus (MLPH) The D locus result that we report is determined by two different genetic variants that can work together to cause diluted pigmentation. These are the common d allele, also known as "d1", and a less common allele known as "d2". Dogs with two d alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one d allele will not be dilute, but can pass the d allele on to their puppies. To view your dog's d1 and d2 test results, click the "SEE DETAILS" link in the upper right hand corner of the "Base Coat Color" section of the Traits page, and then click the "VIEW SUBLOCUS RESULTS" link at the bottom of the page. Dark areas of hair and skin are not lightened (Dd) DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ### TRAITS: COAT COLOR (CONTINUED) TRAIT #### Cocoa (HPS3) Dogs with the **coco** genotype will produce dark brown pigment instead of black in both their hair and skin. Dogs with the **Nco** genotype will produce black pigment, but can pass the **co** allele on to their puppies. Dogs that have the **coco** genotype as well as the **bb** genotype at the B locus are generally a lighter brown than dogs that have the **Bb** or **BB** genotypes at the B locus. Two co alleles, not expressed (coco) #### **B Locus (TYRP1)** Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. E Locus **ee** dogs that carry two **b** alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red". Brown hair and skin (bb) #### Saddle Tan (RALY) The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd. Dogs that have the II genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus at allele, so dogs that do not express at are not influenced by this gene. Likely saddle tan patterned (NI) #### S Locus (MITF) The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype. Likely to have little to no white in coat (SS) DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ### TRAITS: COAT COLOR (CONTINUED) TRAIT RESULT #### M Locus (PMEL) Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an M*m result are likely to be phenotypically merle or could be "non-expressing" merle, meaning that the merle pattern is very subtle or not at all evident in their coat. Dogs with an M*M* result are likely to be phenotypically merle or double merle. Dogs with an mm result have no merle alleles and are unlikely to have a merle coat pattern. No merie alleles (mm) Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions. #### R Locus (USH2A) LINKAGE The R Locus regulates the presence or absence of the roan coat color pattern. Partial duplication of the USH2A gene is strongly associated with this coat pattern. Dogs with at least one **R** allele will likely have roaning on otherwise uniformly unpigmented white areas. Roan appears in white areas controlled by the S Locus but not in other white or cream areas created by other loci, such as the E Locus with **ee** along with Dilute Red Pigmentation by I Locus (for example, in Samoyeds). Mechanisms for controlling the extent of roaning are currently unknown, and roaning can appear in a uniform or non-uniform pattern. Further, non-uniform roaning may appear as ticked, and not obviously roan. The roan pattern can appear with or without ticking. Likely no impact on coat pattern (rr) #### H Locus (Harlequin) This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darker pigment. A dog with an **Hh** result will be harlequin if they are also **M*m** or **M*M*** at the M Locus and are not **ee** at the E locus. Dogs with a result of **hh** will not be harlequin. This trait is thought to be homozygous lethal; a living dog with an **HH** genotype has never been found. No harlequin alleles (hh) **DNA Test Report** Test Date: July 25th, 2023 embk.me/milo6989 RESULT #### TRAITS: OTHER COAT TRAITS TRAIT #### Furnishings (RSPO2) LINKAGE Dogs with one or two copies of the F allele have "furnishings": the mustache, beard, and eyebrows characteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two I alleles will not have furnishings, which is sometimes called an "improper coat" in breeds where furnishings are part of the breed standard. The mutation is a genetic insertion which we measure indirectly using a linkage test highly correlated with the insertion. Likely unfurnished (no mustache, beard, and/or eyebrows) (II) #### Coat Length (FGF5) The FGF5 gene is known to affect hair length in many different species, including cats, dogs, mice, and humans. In dogs, the T allele confers a long, silky haircoat as observed in the Yorkshire Terrier and the Long Haired Whippet. The ancestral G allele causes a shorter coat as seen in the Boxer or the American Staffordshire Terrier. In certain breeds (such as Corgi), the long haircoat is described as "fluff." Likely short or midlength coat (GG) #### Shedding (MC5R) Dogs with at least one copy of the ancestral **C** allele, like many Labradors and German Shepherd Dogs, are heavy or seasonal shedders, while those with two copies of the **T** allele, including many Boxers, Shih Tzus and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSPO2 (the furnishings gene) tend to be low shedders regardless of their genotype at this gene. Likely light shedding (TT) #### Hairlessness (FOXI3) LINKAGE A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and Chinese Crested (other hairless breeds have different mutations). Dogs with the **NDup** genotype are likely to be hairless while dogs with the **NN** genotype are likely to have a normal coat. The **DupDup** genotype has never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines. Very unlikely to be hairless (NN) #### Hairlessness (SGK3) Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the **DD** result are likely to be hairless. Dogs with the **ND** genotype will have a normal coat, but can pass the **D** Very unlikely to be hairless (NN) DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ### TRAITS: OTHER COAT TRAITS (CONTINUED) TRAIT RESULT #### Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines. Likely not albino (NN) #### Coat Texture (KRT71) Dogs with a long coat and at least one copy of the T allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral C allele are likely to have a straight coat, but there are other factors that can cause a curly coat, for example if they at least one F allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the T allele but still have straight coats. Likely straight coat (CC) DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ### TRAITS: OTHER BODY FEATURES TRAIT #### Muzzle Length (BMP3) Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science. Likely medium or long muzzle (AC) #### Tail Length (T) Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail. Likely normal-length tail (CC) #### Hind Dewclaws (LMBR1) Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the T allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws. Unlikely to have hind dew claws (CC) DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ### TRAITS: OTHER BODY FEATURES (CONTINUED) TRAIT #### Blue Eye Color (ALX4) LINKAGE Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines. Less likely to have blue eyes (NN) #### Back Muscling & Bulk, Large Breed (ACSL4) The T allele is associated with heavy muscling along the back and trunk in characteristically "bulky" large-breed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" T allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral C allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog. Likely normal muscling (CC) # embark DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ### **TRAITS: BODY SIZE** | TRAIT | RESULT | |-----------------------------------------------------------------------------|-------------------| | Body Size (IGF1) The I allele is associated with smaller body size. | Smaller (II) | | Body Size (IGFR1) The A allele is associated with smaller body size. | Larger (GG) | | Body Size (STC2) The A allele is associated with smaller body size. | Larger (TT) | | Body Size (GHR - E191K) The A allele is associated with smaller body size. | Intermediate (GA) | | Body Size (GHR - P177L) The T allele is associated with smaller body size. | Larger (CC) | # embark **DNA Test Report** Test Date: July 25th, 2023 embk.me/milo6989 ### TRAITS: PERFORMANCE TRAIT #### **Altitude Adaptation (EPAS1)** This mutation causes dogs to be especially tolerant of low oxygen environments (hypoxia), such as those found at high elevations. Dogs with at least one **A** allele are less susceptible to "altitude sickness." This mutation was originally identified in breeds from high altitude areas such as the Tibetan Mastiff. Normal altitude tolerance (GG) #### Appetite (POMC) LINKAGE This mutation in the POMC gene is found primarily in Labrador and Flat Coated Retrievers. Compared to dogs with no copies of the mutation (NN), dogs with one (ND) or two (DD) copies of the mutation are more likely to have high food motivation, which can cause them to eat excessively, have higher body fat percentage, and be more prone to obesity. Read more about the genetics of POMC, and learn how you can contribute to research, in our blog post (https://embarkvet.com/resources/blog/pomc-dogs/). We measure this result using a linkage test. Normal food motivation (NN) DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ### **HEALTH REPORT** #### How to interpret milo's genetic health results: If milo inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested milo for that we did not detect the risk variant for. #### A genetic test is not a diagnosis This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease. #### Summary Of the 256 genetic health risks we analyzed, we found 1 result that you should learn about. | Increased risk results (1) | |--------------------------------------| | Intervertebral Disc Disease (Type I) | | Clear results | | Breed-relevant (4) | | Other (250) | DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ### **BREED-RELEVANT RESULTS** Research studies indicate that these results are more relevant to dogs like milo, and may influence his chances of developing certain health conditions. | Intervertebral Disc Disease (Type I) (FGF4 retrogene - CFA12) | Increased risk | |-------------------------------------------------------------------------------|----------------| | Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2) | Clear | | Congenital Hypothyroidism with Goiter (TPO Intron 13, French Bulldog Variant) | Clear | | Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1) | Clear | | Urate Kidney & Bladder Stones (SLC2A9) | Clear | | Mast Cell Tumor | No result | DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ## **OTHER RESULTS** Research has not yet linked these conditions to dogs with similar breeds to milo. Review any increased risk or notable results to understand his potential risk and recommendations. | 2-DHA Kidney & Bladder Stones (APRT) | Clear | |----------------------------------------------------------------------------------------------------------------------|-------| | Acral Mutilation Syndrome (GDNF-AS, Spaniel and Pointer Variant) | Clear | | Alaskan Husky Encephalopathy (SLC19A3) | Clear | | Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP) | Clear | | Alexander Disease (GFAP) | Clear | | ALT Activity (GPT) | Clear | | Anhidrotic Ectodermal Dysplasia (EDA Intron 8) | Clear | | Autosomal Dominant Progressive Retinal Atrophy (RHO) | Clear | | Bald Thigh Syndrome (IGFBP5) | Clear | | Bernard-Soulier Syndrome, BSS (GP9, Cocker Spaniel Variant) | Clear | | Bully Whippet Syndrome (MSTN) | Clear | | Canine Elliptocytosis (SPTB Exon 30) | Clear | | Canine Fucosidosis (FUCA1) | Clear | | Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant) | Clear | | Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant) | Clear | | Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant) | Clear | | Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant) | Clear | | Canine Multiple System Degeneration (SERAC1 Exon 4, Chinese Crested Variant) | Clear | # embark DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ## **OTHER RESULTS** | Canine Multiple System Degeneration (SERAC1 Exon 15, Kerry Blue Terrier Variant) | Clear | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------| | Cardiomyopathy and Juvenile Mortality (YARS2) | Clear | | Centronuclear Myopathy, CNM (PTPLA) | Clear | | Cerebellar Hypoplasia (VLDLR, Eurasier Variant) | Clear | | Chondrodystrophy (ITGA10, Norwegian Elkhound and Karelian Bear Dog Variant) | Clear | | Cleft Lip and/or Cleft Palate (ADAMTS20, Nova Scotia Duck Tolling Retriever Variant) | Clear | | Cleft Palate, CP1 (DLX6 intron 2, Nova Scotia Duck Tolling Retriever Variant) | Clear | | Cobalamin Malabsorption (CUBN Exon 8, Beagle Variant) | Clear | | Cobalamin Malabsorption (CUBN Exon 53, Border Collie Variant) | Clear | | | | | Collie Eye Anomaly (NHEJ1) | Clear | | Collie Eye Anomaly (NHEJ1) Complement 3 Deficiency, C3 Deficiency (C3) | Clear | | | | | Complement 3 Deficiency, C3 Deficiency (C3) | Clear | | Complement 3 Deficiency, C3 Deficiency (C3) Congenital Cornification Disorder (NSDHL, Chihuahua Variant) | Clear | | Complement 3 Deficiency, C3 Deficiency (C3) Congenital Cornification Disorder (NSDHL, Chihuahua Variant) Congenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant) | Clear
Clear
Clear | | Congenital Cornification Disorder (NSDHL, Chihuahua Variant) Congenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant) Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant) | Clear
Clear
Clear
Clear | | Congenital Cornification Disorder (NSDHL, Chihuahua Variant) Congenital Hypothyroidism (TPO, Rat, Toy, Hairless Terrier Variant) Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant) Congenital Hypothyroidism with Goiter (SLC5A5, Shih Tzu Variant) | Clear
Clear
Clear
Clear | DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ## **OTHER RESULTS** | Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant) | Clear | |--|-------| | Congenital Myasthenic Syndrome, CMS (CHRNE, Jack Russell Terrier Variant) | Clear | | Congenital Stationary Night Blindness (LRIT3, Beagle Variant) | Clear | | Congenital Stationary Night Blindness (RPE65, Briard Variant) | Clear | | Craniomandibular Osteopathy, CMO (SLC37A2) | Clear | | Craniomandibular Osteopathy, CMO (SLC37A2 Intron 16, Basset Hound Variant) | Clear | | Cystinuria Type I-A (SLC3A1, Newfoundland Variant) | Clear | | Cystinuria Type II-A (SLC3A1, Australian Cattle Dog Variant) | Clear | | Cystinuria Type II-B (SLC7A9, Miniature Pinscher Variant) | Clear | | Day Blindness (CNGB3 Deletion, Alaskan Malamute Variant) | Clear | | Day Blindness (CNGA3 Exon 7, German Shepherd Variant) | Clear | | Day Blindness (CNGA3 Exon 7, Labrador Retriever Variant) | Clear | | Day Blindness (CNGB3 Exon 6, German Shorthaired Pointer Variant) | Clear | | Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS (MYO7A) | Clear | | Degenerative Myelopathy, DM (SOD1A) | Clear | | Demyelinating Polyneuropathy (SBF2/MTRM13) | Clear | | Dental-Skeletal-Retinal Anomaly (MIA3, Cane Corso Variant) | Clear | | Diffuse Cystic Renal Dysplasia and Hepatic Fibrosis (INPP5E Intron 9, Norwich Terrier Variant) | Clear | DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ## **OTHER RESULTS** | Dilated Cardiomyopathy, DCM (RBM20, Schnauzer Variant) | Clear | |---|-------| | Dilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1) | Clear | | Dilated Cardiomyopathy, DCM2 (TTN, Doberman Pinscher Variant 2) | Clear | | Disproportionate Dwarfism (PRKG2, Dogo Argentino Variant) | Clear | | Dry Eye Curly Coat Syndrome (FAM83H Exon 5) | Clear | | Dystrophic Epidermolysis Bullosa (COL7A1, Central Asian Shepherd Dog Variant) | Clear | | Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant) | Clear | | Early Bilateral Deafness (LOXHD1 Exon 38, Rottweiler Variant) | Clear | | Early Onset Adult Deafness, EOAD (EPS8L2 Deletion, Rhodesian Ridgeback Variant) | Clear | | Early Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant) | Clear | | Ehlers Danlos (ADAMTS2, Doberman Pinscher Variant) | Clear | | Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant) | Clear | | Enamel Hypoplasia (ENAM SNP, Parson Russell Terrier Variant) | Clear | | Episodic Falling Syndrome (BCAN) | Clear | | Exercise-Induced Collapse, EIC (DNM1) | Clear | | Factor VII Deficiency (F7 Exon 5) | Clear | | Factor XI Deficiency (F11 Exon 7, Kerry Blue Terrier Variant) | Clear | | Familial Nephropathy (COL4A4 Exon 3, Cocker Spaniel Variant) | Clear | DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ## **OTHER RESULTS** | Familial Nephropathy (COL4A4 Exon 30, English Springer Spaniel Variant) | Clear | |--|-------| | Fanconi Syndrome (FAN1, Basenji Variant) | Clear | | Fetal-Onset Neonatal Neuroaxonal Dystrophy (MFN2, Giant Schnauzer Variant) | Clear | | Glanzmann's Thrombasthenia Type I (ITGA2B Exon 13, Great Pyrenees Variant) | Clear | | Glanzmann's Thrombasthenia Type I (ITGA2B Exon 12, Otterhound Variant) | Clear | | Globoid Cell Leukodystrophy, Krabbe disease (GALC Exon 5, Terrier Variant) | Clear | | Glycogen Storage Disease Type IA, Von Gierke Disease, GSD IA (G6PC, Maltese Variant) | Clear | | Glycogen Storage Disease Type IIIA, GSD IIIA (AGL, Curly Coated Retriever Variant) | Clear | | Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Whippet and English Springer Spaniel Variant) | Clear | | Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Wachtelhund Variant) | Clear | | GM1 Gangliosidosis (GLB1 Exon 2, Portuguese Water Dog Variant) | Clear | | GM1 Gangliosidosis (GLB1 Exon 15, Shiba Inu Variant) | Clear | | GM1 Gangliosidosis (GLB1 Exon 15, Alaskan Husky Variant) | Clear | | GM2 Gangliosidosis (HEXA, Japanese Chin Variant) | Clear | | GM2 Gangliosidosis (HEXB, Poodle Variant) | Clear | | Golden Retriever Progressive Retinal Atrophy 1, GR-PRA1 (SLC4A3) | Clear | | Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8) | Clear | | Goniodysgenesis and Glaucoma, Pectinate Ligament Dysplasia, PLD (OLFM3) | Clear | DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ## **OTHER RESULTS** | Hemophilia A (F8 Exon 11, German Shepherd Variant 1) | Clear | |--|-------| | Hemophilia A (F8 Exon 1, German Shepherd Variant 2) | Clear | | Hemophilia A (F8 Exon 10, Boxer Variant) | Clear | | Hemophilia B (F9 Exon 7, Terrier Variant) | Clear | | Hemophilia B (F9 Exon 7, Rhodesian Ridgeback Variant) | Clear | | Hereditary Ataxia, Cerebellar Degeneration (RAB24, Old English Sheepdog and Gordon Setter Variant) | Clear | | Hereditary Cataracts (HSF4 Exon 9, Australian Shepherd Variant) | Clear | | Hereditary Footpad Hyperkeratosis (FAM83G, Terrier and Kromfohrlander Variant) | Clear | | Hereditary Footpad Hyperkeratosis (DSG1, Rottweiler Variant) | Clear | | Hereditary Nasal Parakeratosis (SUV39H2 Intron 4, Greyhound Variant) | Clear | | Hereditary Nasal Parakeratosis, HNPK (SUV39H2) | Clear | | Hereditary Vitamin D-Resistant Rickets (VDR) | Clear | | Hypocatalasia, Acatalasemia (CAT) | Clear | | Hypomyelination and Tremors (FNIP2, Weimaraner Variant) | Clear | | Hypophosphatasia (ALPL Exon 9, Karelian Bear Dog Variant) | Clear | | Ichthyosis (NIPAL4, American Bulldog Variant) | Clear | | Ichthyosis (ASPRV1 Exon 2, German Shepherd Variant) | Clear | | Ichthyosis (SLC27A4, Great Dane Variant) | Clear | DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ## **OTHER RESULTS** | Ichthyosis, Epidermolytic Hyperkeratosis (KRT10, Terrier Variant) | Clear | |--|-------| | lchthyosis, ICH1 (PNPLA1, Golden Retriever Variant) | Clear | | Inflammatory Myopathy (SLC25A12) | Clear | | Inherited Myopathy of Great Danes (BIN1) | Clear | | Inherited Selected Cobalamin Malabsorption with Proteinuria (CUBN, Komondor Variant) | Clear | | Intestinal Lipid Malabsorption (ACSL5, Australian Kelpie) | Clear | | Junctional Epidermolysis Bullosa (LAMA3 Exon 66, Australian Cattle Dog Variant) | Clear | | Junctional Epidermolysis Bullosa (LAMB3 Exon 11, Australian Shepherd Variant) | Clear | | Juvenile Epilepsy (LGI2) | Clear | | Juvenile Laryngeal Paralysis and Polyneuropathy (RAB3GAP1, Rottweiler Variant) | Clear | | Juvenile Myoclonic Epilepsy (DIRAS1) | Clear | | L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH, Staffordshire Bull Terrier Variant) | Clear | | Lagotto Storage Disease (ATG4D) | Clear | | (Laryngeal Paralysis (RAPGEF6, Miniature Bull Terrier Variant) | Clear | | Late Onset Spinocerebellar Ataxia (CAPN1) | Clear | | Late-Onset Neuronal Ceroid Lipofuscinosis, NCL 12 (ATP13A2, Australian Cattle Dog Variant) | Clear | | Leonberger Polyneuropathy 1 (LPN1, ARHGEF10) | Clear | | Leonberger Polyneuropathy 2 (GJA9) | Clear | DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ## **OTHER RESULTS** | Lethal Acrodermatitis, LAD (MKLN1) | Clear | |---|-------| | Leukodystrophy (TSEN54 Exon 5, Standard Schnauzer Variant) | Clear | | Ligneous Membranitis, LM (PLG) | Clear | | Limb Girdle Muscular Dystrophy (SGCD, Boston Terrier Variant) | Clear | | Limb-Girdle Muscular Dystrophy 2D (SGCA Exon 3, Miniature Dachshund Variant) | Clear | | Long QT Syndrome (KCNQ1) | Clear | | Lundehund Syndrome (LEPREL1) | Clear | | Macular Corneal Dystrophy, MCD (CHST6) | Clear | | Malignant Hyperthermia (RYR1) | Clear | | May-Hegglin Anomaly (MYH9) | Clear | | Methemoglobinemia (CYB5R3, Pit Bull Terrier Variant) | Clear | | Methemoglobinemia (CYB5R3) | Clear | | Microphthalmia (RBP4 Exon 2, Soft Coated Wheaten Terrier Variant) | Clear | | Mucopolysaccharidosis IIIB, Sanfilippo Syndrome Type B, MPS IIIB (NAGLU, Schipperke Variant) | Clear | | Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachshund Variant) | Clear | | Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, New Zealand Huntaway Variant) | Clear | | Mucopolysaccharidosis Type VI, Maroteaux-Lamy Syndrome, MPS VI (ARSB Exon 5, Miniature Pinscher Variant) | Clear | | Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 3, German Shepherd Variant) | Clear | DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ## **OTHER RESULTS** | Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 5, Terrier Brasileiro Variant) | Clear | |---|-------| | Multiple Drug Sensitivity (ABCB1) | Clear | | Muscular Dystrophy (DMD, Cavalier King Charles Spaniel Variant 1) | Clear | | Muscular Dystrophy (DMD, Golden Retriever Variant) | Clear | | Musladin-Lueke Syndrome, MLS (ADAMTSL2) | Clear | | Myasthenia Gravis-Like Syndrome (CHRNE, Heideterrier Variant) | Clear | | Myotonia Congenita (CLCN1 Exon 23, Australian Cattle Dog Variant) | Clear | | Myotonia Congenita (CLCN1 Exon 7, Miniature Schnauzer Variant) | Clear | | Narcolepsy (HCRTR2 Exon 1, Dachshund Variant) | Clear | | Narcolepsy (HCRTR2 Intron 4, Doberman Pinscher Variant) | Clear | | Narcolepsy (HCRTR2 Intron 6, Labrador Retriever Variant) | Clear | | Nemaline Myopathy (NEB, American Bulldog Variant) | Clear | | Neonatal Cerebellar Cortical Degeneration (SPTBN2, Beagle Variant) | Clear | | Neonatal Encephalopathy with Seizures, NEWS (ATF2) | Clear | | Neonatal Interstitial Lung Disease (LAMP3) | Clear | | Neuroaxonal Dystrophy, NAD (VPS11, Rottweiler Variant) | Clear | | Neuroaxonal Dystrophy, NAD (TECPR2, Spanish Water Dog Variant) | Clear | | Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PPT1 Exon 8, Dachshund Variant 1) | Clear | DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ## **OTHER RESULTS** | Neuronal Ceroid Lipofuscinosis 10, NCL 10 (CTSD Exon 5, American Bulldog Variant) | Clear | |--|-------------------------| | Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2) | Clear | | Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 SNP, Border Collie Variant) | Clear | | Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 Deletion, Golden Retriever Variant) | Clear | | Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLN6 Exon 7, Australian Shepherd Variant) | Clear | | Neuronal Ceroid Lipofuscinosis 7, NCL7 (MFSD8, Chihuahua and Chinese Crested Variant) | Clear | | Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8, Australian Shepherd Variant) | Clear | | Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Exon 2, English Setter Variant) | Clear | | Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Insertion, Saluki Variant) | Clear | | Neuronal Ceroid Lipofuscinosis, Cerebellar Ataxia, NCL4A (ARSG Exon 2, American Staffordshire Terrier Variant) | Clear | | Oculocutaneous Albinism, OCA (SLC45A2 Exon 6, Bullmastiff Variant) | Clear | | | | | Oculocutaneous Albinism, OCA (SLC45A2, Small Breed Variant) | Clear | | Oculocutaneous Albinism, OCA (SLC45A2, Small Breed Variant) Oculoskeletal Dysplasia 2 (COL9A2, Samoyed Variant) | Clear | | | | | Oculoskeletal Dysplasia 2 (COL9A2, Samoyed Variant) | Clear | | Oculoskeletal Dysplasia 2 (COL9A2, Samoyed Variant) Osteochondrodysplasia (SLC13A1, Poodle Variant) | Clear | | Oculoskeletal Dysplasia 2 (COL9A2, Samoyed Variant) Osteochondrodysplasia (SLC13A1, Poodle Variant) Osteogenesis Imperfecta (COL1A2, Beagle Variant) | Clear
Clear
Clear | DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ## **OTHER RESULTS** | Pachyonychia Congenita (KRT16, Dogue de Bordeaux Variant) | Clear | |---|-------| | Paroxysmal Dyskinesia, PxD (PIGN) | Clear | | Persistent Mullerian Duct Syndrome, PMDS (AMHR2) | Clear | | Pituitary Dwarfism (POU1F1 Intron 4, Karelian Bear Dog Variant) | Clear | | Platelet Factor X Receptor Deficiency, Scott Syndrome (TMEM16F) | Clear | | Polycystic Kidney Disease, PKD (PKD1) | Clear | | Pompe's Disease (GAA, Finnish and Swedish Lapphund, Lapponian Herder Variant) | Clear | | Prekallikrein Deficiency (KLKB1 Exon 8) | Clear | | Primary Ciliary Dyskinesia, PCD (NME5, Alaskan Malamute Variant) | Clear | | Primary Ciliary Dyskinesia, PCD (CCDC39 Exon 3, Old English Sheepdog Variant) | Clear | | Primary Hyperoxaluria (AGXT) | Clear | | Primary Lens Luxation (ADAMTS17) | Clear | | Primary Open Angle Glaucoma (ADAMTS17 Exon 11, Basset Fauve de Bretagne Variant) | Clear | | Primary Open Angle Glaucoma (ADAMTS10 Exon 17, Beagle Variant) | Clear | | Primary Open Angle Glaucoma (ADAMTS10 Exon 9, Norwegian Elkhound Variant) | Clear | | Primary Open Angle Glaucoma and Primary Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-Pei Variant) | Clear | | Progressive Retinal Atrophy (SAG) | Clear | | Progressive Retinal Atrophy (IFT122 Exon 26, Lapponian Herder Variant) | Clear | DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ## **OTHER RESULTS** | Progressive Retinal Atrophy, Bardet-Biedl Syndrome (BBS2 Exon 11, Shetland Sheepdog Variant) | Clear | |--|-------| | Progressive Retinal Atrophy, CNGA (CNGA1 Exon 9) | Clear | | Progressive Retinal Atrophy, crd1 (PDE6B, American Staffordshire Terrier Variant) | Clear | | Progressive Retinal Atrophy, PRA1 (CNGB1) | Clear | | Progressive Retinal Atrophy, PRA3 (FAM161A) | Clear | | Progressive Retinal Atrophy, prcd (PRCD Exon 1) | Clear | | Progressive Retinal Atrophy, rcd1 (PDE6B Exon 21, Irish Setter Variant) | Clear | | Progressive Retinal Atrophy, rcd3 (PDE6A) | Clear | | Proportionate Dwarfism (GH1 Exon 5, Chihuahua Variant) | Clear | | Protein Losing Nephropathy, PLN (NPHS1) | Clear | | Pyruvate Dehydrogenase Deficiency (PDP1, Spaniel Variant) | Clear | | Pyruvate Kinase Deficiency (PKLR Exon 5, Basenji Variant) | Clear | | Pyruvate Kinase Deficiency (PKLR Exon 7, Beagle Variant) | Clear | | Pyruvate Kinase Deficiency (PKLR Exon 10, Terrier Variant) | Clear | | Pyruvate Kinase Deficiency (PKLR Exon 7, Labrador Retriever Variant) | Clear | | Pyruvate Kinase Deficiency (PKLR Exon 7, Pug Variant) | Clear | | Raine Syndrome (FAM20C) | Clear | | Recurrent Inflammatory Pulmonary Disease, RIPD (AKNA, Rough Collie Variant) | Clear | DNA Test Report Test Date: July 25th, 2023 embk.me/milo6989 ## **OTHER RESULTS** | Renal Cystadenocarcinoma and Nodular Dermatofibrosis (FLCN Exon 7) | Clear | |---|---------| | Retina Dysplasia and/or Optic Nerve Hypoplasia (SIX6 Exon 1, Golden Retriever Variant |) Clear | | Sensory Neuropathy (FAM134B, Border Collie Variant) | Clear | | Severe Combined Immunodeficiency, SCID (PRKDC, Terrier Variant) | Clear | | Severe Combined Immunodeficiency, SCID (RAG1, Wetterhoun Variant) | Clear | | Shaking Puppy Syndrome (PLP1, English Springer Spaniel Variant) | Clear | | Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever (MTBP) | Clear | | Skeletal Dysplasia 2, SD2 (COL11A2, Labrador Retriever Variant) | Clear | | Skin Fragility Syndrome (PKP1, Chesapeake Bay Retriever Variant) | Clear | | Spinocerebellar Ataxia (SCN8A, Alpine Dachsbracke Variant) | Clear | | Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10) | Clear | | Spongy Degeneration with Cerebellar Ataxia 1 (KCNJ10) | Clear | | Spongy Degeneration with Cerebellar Ataxia 2 (ATP1B2) | Clear | | Stargardt Disease (ABCA4 Exon 28, Labrador Retriever Variant) | Clear | | Succinic Semialdehyde Dehydrogenase Deficiency (ALDH5A1 Exon 7, Saluki Variant) | Clear | | Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant) | Clear | | Thrombopathia (RASGRP1 Exon 5, Basset Hound Variant) | Clear | | Thrombopathia (RASGRP1 Exon 8, Landseer Variant) | Clear | # embark **DNA Test Report** Test Date: July 25th, 2023 embk.me/milo6989 ## **OTHER RESULTS** | Trapped Neutrophil Syndrome, TNS (VPS13B) | Clear | |--|-------| | Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant) | Clear | | Ullrich-like Congenital Muscular Dystrophy (COL6A1 Exon 3, Landseer Variant) | Clear | | Unilateral Deafness and Vestibular Syndrome (PTPRQ Exon 39, Doberman Pinscher) | Clear | | Von Willebrand Disease Type I, Type I vWD (VWF) | Clear | | Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant) | Clear | | Von Willebrand Disease Type III, Type III vWD (VWF Exon 4, Terrier Variant) | Clear | | Von Willebrand Disease Type III, Type III vWD (VWF Intron 16, Nederlandse Kooikerhondje Variant) | Clear | | Von Willebrand Disease Type III, Type III vWD (VWF Exon 7, Shetland Sheepdog Variant) | Clear | | X-Linked Hereditary Nephropathy, XLHN (COL4A5 Exon 35, Samoyed Variant 2) | Clear | | X-Linked Myotubular Myopathy (MTM1, Labrador Retriever Variant) | Clear | | X-Linked Progressive Retinal Atrophy 1, XL-PRA1 (RPGR) | Clear | | X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG Exon 1, Basset Hound Variant) | Clear | | X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG, Corgi Variant) | Clear | | Xanthine Urolithiasis (XDH, Mixed Breed Variant) | Clear | | β-Mannosidosis (MANBA Exon 16, Mixed-Breed Variant) | Clear |