

Faculty of Science and Technology

BSc (Hons) Games Technology

May 2018

Design, Implementation and Testing of a Real-Time Strategy Game

by

Jake Ruggier

DISSERTATION DECLARATION

This Dissertation/Project Report is submitted in partial fulfilment of the requirements
for an honours degree at Bournemouth University. I declare that this Dissertation/
Project Report is my own work and that it does not contravene any academic offence
as specified in the University’s regulations.

Retention
I agree that, should the University wish to retain it for reference purposes, a copy of
my Dissertation/Project Report may be held by Bournemouth University normally for a
period of 3 academic years. I understand that my Dissertation/Project Report may be
destroyed once the retention period has expired. I am also aware that the University
does not guarantee to retain this Dissertation/Project Report for any length of time (if
at all) and that I have been advised to retain a copy for my future reference.

Confidentiality
I confirm that this Dissertation/Project Report does not contain information of a
commercial or confidential nature or include personal information other than that which
would normally be in the public domain unless the relevant permissions have been
obtained. In particular, any information which identifies a particular individual’s
religious or political beliefs, information relating to their health, ethnicity, criminal
history or personal life has been anonymised unless permission for its publication has
been granted from the person to whom it relates.

Copyright
The copyright for this dissertation remains with me.

Requests for Information
I agree that this Dissertation/Project Report may be made available as the result of a
request for information under the Freedom of Information Act.

Signed:

Name: Jake Ruggier

Date: 17/05/2018

Programme: BSc Games Technology

ACKNOWLEDGEMENTS

I would like to thank my primary and secondary supervisors, José Fonseca and Glyn Hadley,

along with all those who took part in and submitted feedback for the testing phase of this

project.

ABSTRACT

The aim of this project was to design and develop a casual real-time strategy game in order

to study key aspects such as unit balance the work required to successfully implement them,

as well as how a game of this kind may keep players entertained with an example of

emergence that comes with the application of a few simple rules to objects in a scene.

A study of the state of the art, including game design theory and examples of existing games

of the genre and of emergence, namely Conway’s Game of Life, informed the design of the

game. A complete development followed with the creation of 3D assets, programming and

game engine implementation. A testing phase sought to ensure that the game was well

balanced, iron out any bugs and form a conclusion about the success of the game.

This has culminated in the creation of WWII Simulator, a stylised, light-hearted take on

World War II battles in the form of a simple real-time strategy game.

FIGURES

Figure 1. Early concept sketch for WWII Simulator ... 6

Figure 2. Screenshot of Company of Heroes gameplay ... 8

Figure 3. Gameplay screenshot of Totally Accurate Battle Simulator 9

Figure 4. A computer implementation of Conway’s Game of Life with a recreation of

Gosper’s glider gun .. 10

Figure 5. An example of one of the large-scale formations that have been created in

Conway’s Game of Life featured in Ascani’s video .. 11

Figure 6. Colourised photograph of a British soldier with a captured young German soldier in

central Italy, taken by C. Bowman in 1944, colourised by R. Mallow (2017) 14

Figure 7. Design sketch and values for armour thickness and penetration, showing the range

of angles within which certain shells will penetrate the front of a medium tank. 15

Figure 8. Photograph of Cromwell tank at Bovington Tank Museum in Dorset, UK, alongside

screenshot of the WWII Simulator model in Maya ... 16

Figure 9. British and German soldier models in Unity with basic materials applied 17

Figure 10. Unity screenshot of finalised soldiers with ‘cartoon’ materials applied 17

Figure 11. A sample of code from the Unit parent class ... 18

Figure 12. Chart showing hierarchy of class inheritance for units .. 19

Figure 13. Creation of bullet emitter particle system for the infantry rifle 20

Figure 14. A Panzer IV tank in-game firing a shell ... 21

Figure 15. Diagram showing the way the effective thickness of armour is calculated based on

the angle of impact .. 22

Figure 16. In-game screenshot of British grenadiers and a Cromwell medium tank flanking a

Tiger heavy tank ... 23

Figure 17. AT guns and machine gunners getting into a position to fire 24

Figure 18. Screenshot of units being placed on the German side in sandbox mode. 25

Figure 19. Screenshot of an attempt at a level ending in defeat for the player 26

Figure 20. The Main Menu canvas shown in the Unity editor... 27

CONTENTS

.. 1

Acknowledgements .. 3

Abstract .. 3

Figures .. 4

1. Introduction, Aims and Objectives .. 6

2. State of the Art/Literature Review .. 7

2.1 Game Design Theory... 7

2.2 Existing games .. 8

2.3 Game of Life .. 9

3. Development .. 12

3.1 Research and Design ... 12

3.2 Asset Creation ... 15

3.3 Implementation/Programming .. 16

3.4 Audio ... 28

4. Testing and Refinements ... 29

4.1 Testing Method... 29

4.2 Results and changes ... 29

5. Conclusions and future work ... 31

5.1 Conclusions ... 31

5.2 Future Work .. 31

5.3 Final word ... 32

References ... 33

Appendices ... 35

Appendix A – Game Design Document .. 35

Appendix B – Tester Guide ... 37

Appendix C – Form to be completed before testing .. 38

Appendix D – Tester Feedback form .. 39

Appendix E – Ethics Checklist ... 40

1. INTRODUCTION, AIMS AND OBJECTIVES

This project aims to demonstrate the importance of balance in video games, specifically

strategy games, and explore the process of achieving it. It will also examine how the concept

of emergence may be applied to a game with large numbers of elements with basic rules,

leading to an entertaining and fulfilling experience for players.

To do so, a complete real-time strategy (RTS) game will be developed for the PC. RTS games

make up a subgenre of strategy video games. Events in RTS games progress over time, as

opposed to turn-based strategy games which progress turn-by-turn as a board game would.

They tend to take the form of large game maps in which the player has control of a number

of elements, such as groups of soldiers. They may have a choice of what element they get to

control, and may be able to instruct them to, for example, move to a location and battle

with an enemy.

The proposed game for this project will be a casual, stylised RTS game with a Second World

War setting, titled WWII Simulator. As well as creating the game with behaviours for

different units, there will a strong emphasis on ensuring they are well balanced, i.e. that

none is too weak or too powerful, through testing and adjusting of their characteristics.

Figure 1. Early concept sketch for WWII Simulator

This aim will require first consulting literature such as game design theory to inform the

development of the game and the project as a whole. The development will then start with

the formalising of the design for the game, followed by creation of all required assets,

programming and implementation in a game engine. There will then be a phase of testing

and refining the game, making the use of volunteers in order to identify where the game has

succeeded and what changes must be made to improve it, particularly in the area of game

balance.

2. STATE OF THE ART/LITERATURE REVIEW

This section will look at existing games of the genre and literature on game design theory to

inform this project. It will also study Conway’s Game of Life and how an interpretation of

emergent events as entertaining scenarios could also be applied to this type of game.

2.1 GAME DESIGN THEORY

Books and videos on game design were used to guide the design and development of the

game itself. As well as theories and tips on game design in general, there was a focus on

studying sections specific to the strategy genre and the particular issues that come with

them, such as game balance.

Chapter 11 of The Art of Game Design (Schell 2014) covers the types of game balance and

the difference ways of achieving them, as well as how important and rewarding a part of the

game development process it is. It describes it as “the most artful part of game design, for is

all about understanding subtle nuances in the relationships between the elements of your

game and knowing which ones to alter, how much to alter them, and which ones to leave

alone”. This is a key justification of the decision to focus on game balance in this project.

The game will be ‘asymmetrical’, meaning, rather than units simply all being the same to

ensure a level playing field, they will have different strengths and weaknesses balanced

against each other. For example, one unit might be weaker in terms of maximum

health/durability, but make up for it with higher accuracy or rate of fire. The differences

between units, and the different possible strategies they bring about, will make pitting

different forces against each other ‘interesting and thought-provoking’, and be one of the

key features to make the game fun.

One approach for achieving asymmetric balance is described by Schell with the analogy of

‘Rock, Paper, Scissors’. “None of the elements can be supreme, because there is always

another than can defeat it”. This approach allows certain units to be more powerful, as long

as there is a strong counter to it, a clear strategy against which its strengths become

obsolete. For example, tanks may be very strong against infantry and machine guns, but if

up against them, the player can simply adjust their strategy and use plenty of anti-tank

guns, neutralising that imbalance. This concept is described in an episode of game design

video lesson series Extra Credits (2012) as ‘perfect imbalance’. It argues that having some

slight imbalances make games a lot more engaging, as it means the player has to figure out

the right strategy to counter certain units/weapons which makes them weak when

employed against them. That strategy itself will have weaknesses in other scenarios. If there

are no strategies which can’t be countered by anything, then the game can be considered

well-balanced.

Other general game development advice given by Schell and others which would be useful

in the development of WWII Simulator is that sometimes, removing/cancelling content

rather than adding it is the right option to make the game as good as it can be. As Scott

Rogers advises in Level Up!: The Guide to Great Video Game Design (2010), “Don’t become

so attached to your ideas that you lose objectivity”.

2.2 EXISTING GAMES

There are numerous established real-time strategy series with large followings. One such

series is Company of Heroes (Relic Entertainment 2006). The original is widely considered to

be the one of the best real-time strategy game set in the Second World War, described in

Kotaku (Plunkett 2016) as the “pinnacle of the genre itself”. It features several playable

nations with historical soldiers, weapons and vehicles.

Over the course of a game of Company of Heroes, the player must unlock, build and upgrade

different units, consisting of groups of soldiers of individual vehicles, and use them to defeat

the enemy. They have full control of each unit’s movement around the game map, sending

them to attack particular enemies, capture territory or simply to defend from a spot with

lots of cover. They can choose what units to invest most in depending on their strategy, but

will have to adapt to how their opponent plays. For example, more anti-tank weapons will

be needed if they attack with a lot of vehicles.

Figure 2. Screenshot of Company of Heroes gameplay

Totally Accurate Battle Simulator (Landfall Games 2016) is a very different type of strategy

game. It is a smaller, independent early-access game with a medieval setting. As opposed to

the realism of Company of Heroes, the game is very stylised and much more casual. In each

level, the player has a budget to spend on various low-polygon humanoid soldiers which run

into and attack a set arrangement of enemy soldiers after pressing play.

Figure 3. Gameplay screenshot of Totally Accurate Battle Simulator

Rather than being realistic simulation of battle or deep tactical experience, the unique

selling point of Totally Accurate Battle Simulator is the fun of watching your choice of such

strangely-portrayed characters flail about in the game’s surreal representation of combat.

This has made given the game viral popularity through YouTube. One video, uploaded by

‘FGTeeV’ (2017), has accumulated over 9.2 million views.

2.3 GAME OF LIFE

Emergence is described as what occurs when the whole is greater than the sum of the parts.

Examples of it can be seen in nature, such as the formation of the fractal shapes of

snowflakes. Starlings create fantastic murmurations when flying in a large flock. Termites,

despite individually being very simple creatures with no concept of how to design a

structure, can create large, complicated nests when working as a colony of thousands by

simply following chemical cues left by other termites (Burbeck 2004).

This project won’t be simply drawing from game design theory and existing games to make

a good real-time strategy game. It will be looking into this phenomenon of complexity

arising from a few simple rules and how that can be seen to take the form of emergent

narrative which can enrich this type of game. Mathematician John Conway’s Game of ‘Life’,

a cellular automaton, demonstrated the concept when it was published in Martin Gardner’s

column in Scientific American (1970). It was named as such because it served as a

mathematical explanation to how the basic rules which govern the universe can lead to the

emergence of complex organisms.

The game (Conway describes it as a ‘no-player game’ (Numberphile 2014)) consists of a grid

of square cells, each of which can be either ‘live’ or ‘dead’. What state they’re in is

determined by four rules:

1. If a dead cell has exactly 3 live neighbours (defined as one of the 8 surrounding cells,

both adjacent and diagonal), it becomes live.

2. If a live cell has fewer than 2 live neighbours, it dies, as if by underpopulation.

3. If a cell has more than 3 live neighbours, it dies, as if by overpopulation.

4. If a live cell has 2 or 3 live neighbours, it survives.

With just these four rules governing how the cells change each cycle, complex and

fascinating formations can emerge from different starting arrangements, grow, move

around and replicate, and either ‘die out’ or become static after a few cycles, after many

cycles or carry on forever. Some arrangements have become well known, such as Gosper’s

glider gun (Figure 4), which produces an endless stream of ‘glider’ patterns which move in a

diagonal direction as they repeatedly transition between 4 different shapes of 5 live cells.

The glider gun can even be used to create logic gates within the Game of Life, meaning it

can function as a Turing machine. Others appear random, like explosions or bacterial

colonies, with no mathematical way to predict for certain whether they will eventually die

out.

Figure 4. A computer implementation of Conway’s Game of Life with a recreation of Gosper’s

glider gun

Though it was originally created without computers, using counters on a Go board, many

people have since programmed it and there are numerous websites on which the Game of

Life can be played. It can be a fascinating and addictive experience, testing different

arrangements or just adding individual cells and seeing what happens. It could result in

large, beautiful movements which spread across the grid, or in a fast destruction of itself.

Some of the formations people have created over the years could be describes as artistic,

and are so enjoyable to watch that one video of various large-scale Life scenarios titled ‘epic

conway’s game of life’ (sic) uploaded by YouTube user Emanuele Ascani (2011), for example,

has over 2.1 million views.

Figure 5. An example of one of the large-scale formations that have been created in

Conway’s Game of Life featured in Ascani’s video

This project will attempt to create a similar experience using the format of a real-time

strategy game, in terms of a few simple unit behaviours programmed being turned into

enjoyable-to-watch emergent events when arranged into different large-scale starting

combinations.

3. DEVELOPMENT

This section will describe the methodology and development process for the game. This

included the design, 3D modelling, programming, game engine implementation and testing.

3.1 RESEARCH AND DESIGN

The first step was the research to inform the design and implementation of the game,

including the study of game design theory and other games as covered in sections 1 and 2.

Both Company of Heroes and Totally Accurate Battle Simulator were drawn from in the

design of the game. The basic template for the gameplay, as well as the visual style and

humour, owe more to the latter.

WWII Simulator shares with Totally Accurate Battle Simulator the system of placing different

units into a scene limited by a budget and watching them fight. The enjoyment you can get

from simply watching the battles based on the units you put in, with the comical simplicity

of the look and behaviour of the soldiers, was a key inspiration. As Casey Chan put it in

Gizmodo (2016), “the beauty is in the hilarity”.

WWII Simulator’s own version of this hilarity and simplicity is a justification for the early

decision to limit the player’s agency to affect the battle to the selection and placement of

units, after which they would just watch. This works because of the key objective of the

project to make the battles really enjoyable to watch, as it is in Totally Accurate Battle

Simulator. Players laugh at the way the soldiers move and attack each other, they find

themselves rooting for the last surviving soldiers on their side, and they always want to try

out new combinations, not just for the motive of winning, but for the desire to see how they

play out.

But to make it work as a strategy game, even a casual one, making the choice and

placement of units the sole means of the player to affect the outcome of each battle

requires a lot of thought to be put into these unit types. They each need to be very

distinctive and have very clear, possibly exaggerated, strengths and weaknesses.

The influence of Company of Heroes is largely in the World War II setting and the different

unit types that come with it and, importantly, how they complement and counteract each

other. Each has its role. Tanks support infantry, in particular against machine guns and other

vehicles. But they will generally struggle without infantry, which in turn supports them

against anti-tank units. Units like snipers aren’t to be used to attack the enemy on their

own, but can effectively support other units from a distance. Some units can be produced in

greater numbers, others are more powerful but more costly to produce.

The plan from the start was to keep the same emphasis on this dynamic, on the importance

of specific units being required alongside others to tackle specific challenged, with room for

alternative strategies for players to experiment with.

It was decided that there would be 7 unit types to feature in WWII Simulator:

Infantry – Basic soldier unit with rifle.

Sniper – Can’t take much damage, keeps distance and fires accurate shots, prioritising

machine gunners and other snipers.

Grenadier – Tries to get around enemy tanks to fire their low-penetration handheld AT

weapon into the thinner side and rear armour. Also has a grenade to throw.

Machine gun – Places itself at a distance from the enemy. Very rapid but inaccurate fire is

highly effective against groups of enemy soldiers.

Anti-tank gun – Keeps its distance and fires high-penetration shells at tanks, or other units if

necessary, loses effectiveness at short range.

Medium tank – Fast moving, lightly armoured tank. Will attempt to flank enemy heavy

tanks. Immune to bullet fire, and very effective against soldiers and emplacements.

Heavy tank – Slower tank with stronger frontal and side armour. Grenadiers and medium

tanks will have a harder time penetrating it.

Another aspect of Company of Heroes to emulate was the appeal of the playable nations’

different ‘characters’, in terms of their visuals as well as how they play. Each has its own

recognisable vehicles, weapons and uniforms for different soldiers, and also its strengths

and weaknesses based on how it fought in the war. Senior designer Quinn Duffy described

in an interview with PC Gamer (2016) that they developed each army’s ‘essence’ by looking

at what they did historically to lead to their successes, then “pitting them against each other

again and again and tweaking and tuning”.

An important part of WWII Simulator was making each nation’s soldiers and each of their

weapons and vehicles recognisable. For each, the most appropriate one to represent had to

be determined, based on their fame and historical significance, balanced with what their

role would be in the game. This required some research.

There were some iconic helmets and hats worn by the different countries that fought in the

war, and it was decided that two would be represented for each in the game (one for most

soldiers, the other for a few specialised soldiers). For the British, it was concluded that the

two most recognisable were the wide-rimmed Brodie helmet, “the most instantly

recognisable symbol of the British Tommy” (Pegler 1996), and the beret. For the Germans,

the primary headgear would be their equivalent helmet for the two world wars, the

Stahlhelm, and the secondary would be based on the caps like those worn by the S.S.

Figure 6. Colourised photograph of a British soldier with a captured young German soldier in

central Italy, taken by C. Bowman in 1944, colourised by R. Mallow (2017)

The most common other weapons of the same ability for each nation were researched,

deciding on:

Machine gun: British Vickers MG, German MG-42.

Grenade: British Mills bomb, German Stielhandgranate.

Handheld AT launcher: British PIAT launcher, German Panzerschreck.

Anti-tank gun: British 17-pounder. German 8,8cm Pak 43.

The same was then done for tanks. The Cromwell, which saw extensive use by the British

Army in the latter stages of the war, is the perfect fit for a fast tank with relatively weak

anti-tank capability. The Panzer IV, while having similar armour characteristics, is known

more for its anti-tank gun than its mobility, but it still appropriate to fill the role as

Germany’s medium tank. It would be important to ensure that neither performs better in-

game that the other and would either share the value for aspects like armour, speed and

penetration for the sake of the game, or have any differences balanced against each other.

Britain’s heavy tank series in the war was the Churchill, and the Mk. III would be their

representative in the game. The German heavy tank could be nothing other than the Tiger.

Figure 7. Design sketch and values for armour thickness and penetration, showing the range

of angles within which certain shells will penetrate the front of a medium tank.

Decisions were made for the values of front and side armour thickness and of penetration

ability of heavy tanks and AT guns, medium tanks and grenadier handheld AT launchers by

calculating what it would take to penetrate in different scenarios at different angles (Figure

7).

All of these design decisions were put into a game design document (Appendix A), along

with details of the game mechanics, asset lists and unique selling points. It is important to

define at the start the scope of games like this to avoid ending up with either a lack of

features, or ‘feature creep’, when features keep getting added midway through

development, making it impossible to keep to a deadline (Greene 2017).

3.2 ASSET CREATION

Nearly all of the assets to be made were 3D models. They needed to be made for the head,

body and hats/helmets of soldiers, weapons including rifles, grenades and anti-tank guns,

and tanks.

The software used for all of this modelling was Maya LT 2016 (Autodesk 2015). It was

chosen over more complex sculpting software packages like Zbrush 4R7 (Pixologic 2015)

because the objects to be modelled, with the simplistic art style, will only require hard-

surface modelling which Maya is designed for, rather than organic models. Using Maya also

allowed the polygon count to be kept as low as possible. Maximising performance is

important for a game in which large numbers of game objects may be in play at once.

To ensure the dimensions of the models were accurate, blueprints from the-blueprints.com

(EVOlution Graphics 2009) were used for each of them, with up to 3 image planes and the

orthographic camera, as well as photos of the subjects.

A stylised, cartoon-like art style had been chosen for the game, so no time needed to be

spent on texturing the models in Maya. They would simply have block-colour materials

applied to them in Unity.

It was important to make sure that certain parts of models like the tanks were kept as

separate meshes (but still saved together) if they needed to move/rotate separately (e.g.

turret) or have a different material (e.g. tracks).

Figure 8. Photograph of Cromwell tank at Bovington Tank Museum in Dorset, UK, alongside

screenshot of the WWII Simulator model in Maya

To fit with the art style and keep polygon counts low (for the reasons highlighted above),

the models are all simplified representations of the real objects/vehicles, excluding any

small details which have no relevance to the gameplay. For example, in the model for the

Cromwell tank, only the basic shape of the front hull is modelled apart from the hull

machine gun, as that’s something which is functional in the game.

 3.3 IMPLEMENTATION/PROGRAMMING

The game was made in Unity 5 (Unity Technologies 2015), a multi-platform game engine

which allows 3D games to be made far more quickly than creating an engine from scratch. It

has an in-built physics system, which was to be very useful in WWII Simulator. All scripting

was done in the C# object-oriented programming language, using the Visual Studio 2015 IDE

(Microsoft 2015).

Figure 9. British and German soldier models in Unity with basic materials applied

The first task in Unity was to finalise the look of the models in-game. After importing the

models for the soldier head, body, helmets and hats, they were put together as child objects

of parent ‘Tommy’ and ‘Jerry’ soldier objects and saved as prefabs. Basic colour materials

were applied for the clothes and headwear (Figure 9). After experimenting with realistic skin

colour materials, it was decided that they would be used rather than a basic white

mannequin colour for all of them. British soldiers would have a larger variety of possible skin

tones, representing the men from across the Empire and Commonwealth who fought in the

war, compared the mostly white forces of Germany.

An asset from the Unity Asset Store, UniTOON Ultra (Warhead-Designz 2015) was then used

to give the textures a cel-shaded look, as well as thick outlines, making the game objects

look like part of a cartoon. The other models, including the tanks, were then imported,

turned into prefabs and had their materials applied.

Figure 10. Unity screenshot of finalised soldiers with ‘cartoon’ materials applied

The tank and heavy weapon prefabs in particular had to be put together in terms of parent

and child transforms in a specific way. For example, the tank turrets must be parents of an

empty ‘TurretPivot’ object, itself a child of the hull object and placed at the point around

which the turret was to rotate.

Work then started on programming, which was to use object-oriented techniques. All units

are objects of classes inheriting from a ‘Unit’ parent class (Figure 11). It contains variables

and methods which all units share, such as the health, rate of fire, an array of all enemies’

scripts and functions for calculating the closest enemy. Most are protected, meaning they

can be accessed from inheriting scripts but not those of other objects. Some, including the

team, unit type and the function for determining units within an explosion’s radius are

public as they need to be accessed by other objects’ scripts. There are also virtual methods

like those for moving and attacking, which all units have, but each defining them differently

using an override in their respective derived classes.

Figure 11. A sample of code from the Unit parent class

The 7 base unit type classes each inherit from one of three classes which derive from unit.

Infantry, Sniper and Grenadier inherit from Soldier, Machine gun and Anti-tank gun inherit

from Heavy weapon, and Heavy Tank and Medium tank inherit from Tank. Those within

each one share many variables and methods which others don’t, as well as having similar

Unity transform hierarchies. For example, all soldiers have a weapon in the same place, and

all heavy weapon unit have a pivot around which the gun will rotate when it’s lifted.

Figure 12. Chart showing hierarchy of class inheritance for units

This whole structure makes the program a lot more efficiently-written, avoiding repeated

code. It allowed new units to be programmed quickly once the parent classes had been

completed. Many of the child classes, like those for snipers and infantry, contain very few

lines of code, requiring little more than different values for variables such as speed and

rateOfFire to be assigned in their class declarations.

 The first units to complete were the infantry and the sniper. As mentioned above, they

mostly use the same code from the Unit and Soldier classes and behave very similarly. One

key difference is that the sniper stops moving towards an enemy if it is within its maximum

firing range, implemented with a simple if statement in the Movement() function in the

Soldier class. Another difference comes with the priorityTarget string variable which was

implemented. It’s used in the Targeting() function in the Unit class, from which the

Movement() and Attack() functions are called. It calls the closestEnemy() function twice; first

to find the closest enemy in the scene regardless of unit type, then to find the closest unit of

a particular type or types within its firing range. In this case of the sniper, the string value of

“snipermachinegun” means that if any enemy snipers or machine gunners are within its

range, it will shoot the closest one of them, even if there are infantry units closer.

Work in the Unity editor continued during the scripting process. As the basic functionality

for the infantry and snipers took shape, a basic up-and-down animation for them was made

to play when they’re moving, to give them the look of hopping towards their target, as

opposed to simply sliding along the ground. Code was quickly written to turn toggle the

animation on and off based on the movement. A random delay in starting the animation at

the beginning of a game was also implemented so soldiers don’t move up and down in

perfect timing with each other, which looked unnatural.

Also created at this point were the particle systems for the bullets of their rifles. It was

decided to use particle systems rather than projectile game objects, because the latter have

a bigger impact on performance, and are less accurate with the possibility of fast projectiles

passing through small colliders without a collision being detected.

The particle system for infantry’s bullets was made first. It consists of short yellow trails that

get narrower and fainter further back. When one is emitted, it travels at high speed (but less

than a realistic speed so it can be seen in-game) in a forward direction, but with random

deviation within a narrow cone shape. When the soldier isn’t firing its weapon, the emission

over time is set to 0. When it is set to start firing, a function in the Soldier class sets the

emission over time to be a random between two constants, being the upper and lower rates

of fire calculated with the unit’s rateOfFire and variation variables.

Figure 13. Creation of bullet emitter particle system for the infantry rifle

For the sniper, the start speed was simply made much faster, the trail made longer, and the

radius/angle of the cone determining accuracy made smaller.

A script was made to be attached to each bullet particle system in which the

OnParticleCollision() function, automatically called whenever a particle hits an object,

determines whether it has hit a soldier and, if so, sends a message to its script, passing to it

the specific collider hit. A function in the hit unit’s script then determines how much health

should be lost as a result. If the body is hit, 5 health is lost (half health of infantry or

grenadier, full health of sniper or heavy weapon crew). If the head is hit, 10 health is lost

(will always lead to death). If the helmet/hat is hit, no health is lost, but it becomes a

separate game object and rigidbody and flies of the soldier’s head, leaving it more exposed.

After the infantry and sniper were complete, work began on the tanks, since the functions

of units like the grenadier and AT gun wouldn’t be able to be tested until tanks were in the

game. It was important to make their movement look believable, which was achieved with a

function to rotate smoothly and by limiting the tank’s forward/backward acceleration based

on how far from its target it’s pointing. Forward and backward movement is done with an

AddForce() function on the rigidbody, and experimentation and adjustments needed to be

made to its mass and drag values along with the strength of the force until it looked and

worked as envisioned.

The turret rotates smoothly in the same way as the hull, and the gun rotates around its

pivot linearly. The functionality of the tank gun was implemented similarly to the bullets. It

was considered to use game objects and rigidbodies for the shells, as it was thought they

would look more realistic when bouncing off targets and the fact there would be fewer

shells than bullets meant that performance wouldn’t have been an issue. But there would

have still been issues with detecting collisions accurately, and it was found that the desired

effects could be largely achieved with a particle system.

A basic 3D mesh was made for a tank shell and used in the particle system’s renderer

without shadows to give the particles the shape of a shell, while still looking almost 2D and

cartoon-like.

As with the bullet emitters, there is a script for the shell emitter. As well as handling

collisions, it also ensures that the shell always points in the right direction when it is ‘fired’

by setting its start rotation to be the same as that of the particle system itself, which moves

and rotates in line with the gun.

Figure 14. A Panzer IV tank in-game firing a shell

Upon a collision, the script determines first what the shell has hit. If it’s anything other than

a tank, such as the ground or a soldier, then it destroys the particle and triggers an

explosion, consisting of two other particle systems which are children of the shell emitter

set to the world position of the collision. A function in the Unit class is called which has an

explosion force added (and where applicable, health taken away) to all objects within the

explosion radius. If a tank is hit, then its penetrated() Boolean function is called. This returns

whether the shell would penetrate based on the shell’s penetration value (defined by public

variable on shell script) modified by the distance it’s travelled and the effective thickness of

the armour. This effective thickness (T) is calculated with the thickness of the armour

represented by the particular collider hit (h) and the angle of impact (α) using the formula T

= h/cos(α).

Figure 15. Diagram showing the way the effective thickness of armour is calculated based on

the angle of impact

If the shell is determined to have penetrated the armour, then health is taken away from

the tank (5 out of 10 max health) and the particle is destroyed, and a small ‘puff of smoke’

particle effect plays at the point of the penetration. A small force is also applied the tank in

the direction the shell’s travel. These effects give the player good feedback, making it both

clear and satisfying when a tank is damaged. If a tank has run out of health, a plume of

smoke with start rising from its rear, along with some sparks, making it clear which tanks are

no longer in play.

If the shell doesn’t penetrate, then the particle bounces off, and its rotation over speed is

enabled, so it appears to spin as it ricochets off, slowing down if it comes to a stop on the

ground.

The tanks’ secondary weapon is the frontal hull machine gun. It was implemented using the

same bullet emitter particle system as the infantry rifles (including the same script), but with

a much higher rate of fire and much wider cone within which the bullets can deviate (lower

accuracy). Each frame, the tank checks whether there is an enemy soldier close and within

30 degrees to the left or right of the direction the machine gun is facing and toggles it on if

so. It acts independently of the turret, which can be shooting at a vehicle while the machine

gun is firing at something else. For balance reasons, its range is smaller than the distance

from enemies at which the tank will stop, so its role is largely limited to defending against

soldiers moving towards it.

After tanks, work began on the grenadier unit. Like the infantry and sniper units, it inherits

from the soldier class, but has a lot more of its own code as well, starting with the function

for throwing its grenade. Each grenadier has one which it throws when there is an enemy

soldier or heavy weapon a certain distance in front of it, which it detects in the same way as

the tanks’ hull machine guns do, independently of its primary target. The grenade is

separated from the unit transform and given a rigidbody, to which a force forwards and

upwards is applied. The same script then counts down from its timer of 3 seconds (± a slight

random variation) until the explosion is triggered. It uses the same particle effects and

functions for applying damage and explosion force as those for the tanks.

The grenadier’s primary function of using a handheld AT weapon to attack tanks required

more new work. To be effective, they would have to flank around to the side and rear of

tanks where the armour is thinner. All other units at this point simply looked at and moved

directly towards their target. The solution was to create three new empty child objects for

each tank; one a distance to its left, one a distance to its right, and one a distance to its rear.

When targeting a tank, a function in the Unit class determines which of these new ‘marker’

objects is the closest (the rear marker is defined as closest if the attacking unit is anywhere

further back than the side markers). With the grenadier, the body rotates independently of

the actual parent object rotation when attacking a tank, so it is always looking at it, even

when moving towards one of the markers. The result is that they appear to strafe around

tanks to the side and rear and fire at them.

The anti-tank weapons use the same shell emitter particle system as the tanks themselves,

with the main difference being that there is no explosion when they hit something other

than a tank. They will, however, knock back and kill any soldiers they hit directly.

Figure 16. In-game screenshot of British grenadiers and a Cromwell medium tank flanking a

Tiger heavy tank

Flanking was then implemented for medium tanks attacking heavy tanks, using the same

marker child objects and functions for targeting them. The turrets already rotate

independently of the hull, a very satisfactory functionality was achieved relatively quickly.

The final units to be programmed were the heavy weapons; the machine gun and anti-tank

gun. Despite appearing quite different, they both inherit most of their behaviours from the

heavyWeapon class. They each have to ‘lift’ their gun around a pivot when they move and

put it back down once they’re in range in order to fire. They have a limited arc within which

the barrel of the gun can aim before they need lifting up and moving. The code works

perfectly well for each with only different placements of the pivots and values for the

rotation limits.

Their main difference is in their attacks. The anti-tank gun’s shell emitter works in exactly

the same way as the tanks’, launching a single shell particle when the reload timer has

reached 0 and the enemy is within range and line of sight. It has the same penetration value

(130) and rate of fire as the heavy tank. The machine gun has a bullet emitter the same as

those of the tanks’ hull machine guns, but with a higher rate of emission, that is toggled on

and off.

Figure 17. AT guns and machine gunners getting into a position to fire

One issue specific to the AT gun that needed solving came about from the fact it has two

crew members. Initially, enemy infantry units would move towards and attempt to attack

the shield of the actual gun as that’s where the centre of the parent game object is. The

solution was to use the marker points function used for flanking. AT guns now have side and

rear empty child game objects just like the tanks, except the rear marker takes the position

of the further-back crew member, moving to the other when that one is dead. Using the

same function in the Unit class for detecting and moving towards to closest marker as

grenadiers and tanks results in infantry going around to the sides and then attacking each

crewman. Each has its own health, able to take one shot each, and when they’re both dead,

the unit itself counts as being dead and can no longer move or attack.

Once all the units had been completed, the project needed to be turned into a functional

game. Players needed the ability to choose and place units within a build, whilst testing so

far had been done by simply placing prefabs into a scene in the Unity editor.

It would all be handled by the script attached to the camera that also handles its movement

and rotation. The W, S, A and D keys move it forwards, backwards, left and right along a flat

plane, the Q and R keys move it directly down and up, and moving the mouse changes the

direction it’s looking. The speed it moves depends on its height above the battlefield,

moving more slowly when looking closely at units. It can be slowed down further by holding

down the left shift key. Since watching the combat is all the player can do after placing their

units, it was important to ensure that they have flexibility in how they watch it and can do

so intuitively.

Units are placed within a grid, with each type taking a up a certain amount of space. A 2D

array of transforms stores which squares are taken up by which units, and units cannot be

placed or moved to a position where there is no space for them.

Two modes for placing units were included, which can be changed between using tickboxes

in the editor UI canvas. Using move mode allows the player to click and drag to place a

single unit in a specific location or move a unit that’s already been placed. Clicking and

dragging with draw mode on places a unit in every free space the mouse goes over, allowing

large armies to be created quickly. Placed units can be deleted either by left-clicking them

with the delete mode turned on, or by right-clicking them with any mode selected.

Figure 18. Screenshot of units being placed on the German side in sandbox mode.

The grid dimensions for each level are defined through public variables on the camera

script. The boundaries are marked based on them using four marker objects, that look like

large wooden stakes, at the corners. Also defined through public variables is the budget. It

can be set differently for each level. Each time a unit is placed, the corresponding amount

(returned by the unitCost() function) is subtracted from the remaining budget, shown at the

top of the screen. The same amount is added back if a unit is deleted. If the player goes over

budget, the overspend is shown in red and they are unable to press start.

If the player has placed an army that doesn’t exceed the budget, they may press the ‘Start’

button in the top right of the screen to begin the fight. Doing so hides the UI for the editor

mode, activates the scripts for all units and gives the player unrestricted movement with the

camera (its rotation is fixed while placing units).

Figure 19. Screenshot of an attempt at a level ending in defeat for the player

The battle plays out, and once all units of one of the teams are killed, the result is displayed

on screen. If the player succeeds in one of the levels, a button will appear to take them to

the next level. If they are unsuccessful, they can press the reset button in the top-right of

the screen, which is available as soon as the battle starts and resets the scene, so they can

try making a new army.

Once all of the mechanics were completed, work began on the levels. They were made by

running the game in the editor and placing a formation of German units, which were copied

and then pasted into the level’s scene and saved. The ‘Swap side’ button used in sandbox

mode had to be enabled in order to make each level, then disabled again before saving.

There is a total of 12 levels. In the earlier levels, there are fewer units available to the

player, with only infantry allowed in level 1 so it functions as a basic tutorial. Which units are

available or locked is decided by a public string variable in the camera script. For example,

the value “uptoatgun” will disable the ‘Button (Script)’ component of the medium tank and

heavy tank buttons and replace their text with “Locked”.

In the later levels, more units are available to the player and budgets are higher, and they

will be against larger numbers of German units.

Once the levels were completed, in order to make the game playable for testers, only the

menu/user interface was needed to be completed to allow navigation between them. A

scene was made for the main menu, which would be the first one seen when the game is

run. It contains a UI canvas with buttons for each of the levels, for sandbox mode and to

quit the game. They each link to a small C# script called MenuScript with two functions; one

to load a particular scene based on the passed string for scene name, and one which simply

quits the application.

Figure 20. The Main Menu canvas shown in the Unity editor

A background image and title/were added to make the screen visually appealing, as it’s the

first thing a player will see when playing the game. The background image was made by

taking a screenshot of a build of a scene with an orthographic camera looking at an

arrangement of static British and German units. The logo was made using text in Paint.NET

(dotPDN LLC 2016).

3.4 AUDIO

Work began on implementing sounds began once all other aspects of the game were

complete and functional, as they were less of a priority. But it was believed that they were

an important feature that could only improve the game, and early testing responses showed

that it was something players desired.

Royalty-free sound effects for a gunshot (Ruok 2015), explosion (Blastwave FX 2015) and a

metal impact (Zapsplat 2015) were downloaded from online library Zapsplat. The audio-

editing software Audacity (The Audacity Team 2016), was then used to alter their pitch and

duration to create specific sound effects for rifle fire, tank gun fire, AT weapon fire, grenade

and tank shell explosions and for the ricochet of a shell off a tank. For music, a medley of

‘Songs of the World Wars’ (Band of the Royal Corps of Engineers et al. 2002) including Hang

out the washing on the Siegfried Line was bought, downloaded and edited to be faster and

higher-pitch, to play in the Main Menu scene.

To be implemented into Unity, audio source components had to be added to the objects

from which they would be heard, and the line of code to make them play added to their

respective scripts. The curve for the volume per distance for each audio source component

was adjusted so, for example, louder sounds like explosions and sniper rifle shots could be

heard from further away than others.

4. TESTING AND REFINEMENTS

4.1 TESTING METHOD

Volunteers were sought to take part in the testing phase, asked either through word of

mouth or online. Each was sent a link to a shared Google Drive folder. The first of its

contents was a pdf ‘Tester Guide’ (Appendix B), which explained how to download and play

the game, and the aims of the testing. It asked testers to first complete a short form

(Appendix C), also in the Drive folder, which asked first for some basic information of them

(their age, gender and computer gaming experience). They then had to confirm that they

had had the testing explained to them and consented to take part by ticking tickboxes and

signing their name.

The main aim of the testing, as explained to testers, along with getting general opinions on

the game and finding any bugs, was to ensure that the units were well balanced.

Specifically, that no units were too weak, too powerful, too cheap or too expensive, and

that there were no ‘one-size-fits-all’ strategies. Players were advised to play the levels,

testing different combinations of units, as well as experimenting in sandbox mode.

In order for participants to submit their feedback, a document was created for each of them

(Appendix D). They contained questions on their opinions on the game, whether they found

any bugs or other irregularities and whether they felt there were any balance issues.

4.2 RESULTS AND CHANGES

A total of 11 completed feedback forms were returned by test participants. In terms of

general views of the game overall, all expressed a positive opinion of it. Several talked about

how much they enjoyed the challenge of completing all of the levels. There was a lot of

praise for the graphics; the cartoon art style was popular, along with specific details like the

way helmets pop off or soldiers are sent flying by explosions. They really enjoyed watching

the battles play out. Many also complimented the simple layout of the GUI, which they

found easy to use.

There were relatively few balance issues reported, with some unable to suggest any unit

which they thought was over- or under-powered, which is positive. Many appeared to pick

up the dynamic of certain units countering others and how to use it to their fairly quickly.

But there was a consensus amongst several that AT guns were too weak, particularly against

medium tanks. One tester described needing four AT guns to be able to defeat just two

medium tanks, which, as well as being unrealistic, shows that their strengths were not

sufficiently counter-balanced.

As a result of this finding, both units were rebalanced in a number of ways. For the AT gun,

the rotation speed, accuracy, maximum firing distance and rate of fire were all increased

slightly. Their ability to aim at moving targets was also improved. The first change made to

the medium tank was to make the colliders for the treads count as normal armour.

Previously, any shell which hit them instead of one of the main hull and turret armour

colliders would automatically ricochet. This led to many shells from AT gun shells bouncing

unexpectedly off the sides of what were meant to be lightly-armoured tanks. This change

made games with medium tanks more consistent and less frustrating, as there is now less

luck involved in whether they get penetrated by a high-powered gun. The rate of fire was

also reduced slightly.

Some testers gave feedback about the difficulty of the levels. This was used to ensure that

none is too easy or hard, and that they increase steadily in difficulty. For example, Level 6,

which had been judged to be significantly easier than the levels both before and after it, had

the number of infantry supporting the enemy tanks greatly increased.

A few bugs and other issues were reported. While none were game-breaking, most of those

which did have an impact were fixed either while the test was ongoing or afterwards.

Several of these related to units either getting stuck or not firing when there were lots of

destroyed tanks or heavy weapons on the battlefield. Existing code for flanking and strafing

were used to solve many of the issues of getting stuck, and heavy weapons were changed

such that dead units in front wouldn’t stop them firing. One glitch which wasn’t solved was

one whereby a machine gunner unit would jump to the middle of the battlefield and spin.

This appears to be purely visual, however, and doesn’t affect the gameplay

Many testers suggested additions or changes which they thought would improve the game.

As mentioned in chapter 3, there were those who would have liked sound effects and menu

music, which was added shortly after. Other suggestions were for small improvements like

the ability to see the enemy army before pressing go, for units to automatically stop being

placed when the budget’s run out and for draw mode to be the default mode for placing

units, as it was most people’s first choice. There was also an idea for a version of sandbox

mode in which an enemy army would be procedurally generated based on how much the

player has spent on theirs.

5. CONCLUSIONS AND FUTURE WORK

5.1 CONCLUSIONS

The key project task of designing, implementing and testing a complete, functioning real-

time strategy game has been completed successfully with WWII Simulator. The results of

the testing show that the game also achieves what it set out to do. Participants responded

well to the game and spoke of their pleasure at the concept and art style and enjoyment of

figuring out the strategies in order to overcome the challenge of the levels. This vindicates

the design decisions and the literature that informed them as well as the implementation

itself. On the main focus of balance of the units, the fact the few issues raised by the testing

have all been addressed arguably serves as proof that ambition of making the game well-

balances has been achieved. The value of the testing phase has also been clearly

demonstrated.

The hypothesis that a large number of elements with simple rules in a video game could

lead to what could be described as an example of emergence which serves as an important

source of enjoyment for the player. The behaviours of the individual units in WWII Simulator

are very simple, consisting largely of the basic functions of moving in the direction of the

closest enemy and firing their weapon. The battles that play out when they’re multiplied

tens or even hundreds of times give the impression of greater complexity which player

enjoy watching, as shown by the testing feedback.

5.2 FUTURE WORK

Ambitions for future further development of WWII Simulator would include suggestions

made by participants of the test and proposed content and features which weren’t included

in the final version for this project.

There had been basic plans to include plane units such as the Spitfire fighters. The advice of

Schell and Rogers in their books contributed to the decision to drop them. Without a lot

more work, it was thought that they would either have very little relation to what happened

to the other units, or would simply disrupt their balanced dynamics, without added much

value to the project. Similarly, an ambition to include US and Soviet armies wasn’t fulfilled

as the lack of meaningful addition to the core gameplay wouldn’t have justified amount of

time required. However, they could be a successful part of any future expansions to the

game separate from this project.

The small changes suggested by testers such as the ability to see the enemy army would be

implemented, as would the ability to save army formations that players have made. The

suggested feature of procedurally-generated enemy armies based on the player’s would

also be fascinating to develop, as it could add a lot of longevity to the game without simply

creating more set levels.

5.3 FINAL WORD

This project’s stated task of ‘Design, Implementation and Testing of a Real-Time Strategy

Game’ has been successful, with all of its key aims achieved, including the key aim of

ensuring it is well balanced.

REFERENCES

Schell, J., 2014. The Art of Game Design. 2nd edition. Burlington, VT, United States: Taylor & Francis

Inc.

Portnow, J and Floyd, D. 2012. Perfect Imbalance - Why Unbalanced Design Creates Balanced Play -

Extra Credits [video, online]. YouTube. Available from:

https://www.youtube.com/watch?v=e31OSVZF77w [accessed 15th May 2018].

Rogers, S., 2010. Level Up!: The Guide to Great Video Game Design. 1st Edition. Hoboken, NJ, United

States: John Wiley & Sons Inc.

Relic Entertainment, 2006. Company of Heroes [computer game]. Agoura Hills, CA, United States:

THQ.

Plunckett, C., 2016. The Best World War Two Video Games. Kotaku [online]. 2nd February 2016.

Available from: https://thebests.kotaku.com/the-best-world-war-two-video-games-1755330908

[accessed 14th May 2018].

Landfall Games, 2016. Totally Accurate Battle Simulator. Pre-alpha [computer game]. Stockholm,

Sweden: Landfall Games.

The Family Gaming Team, 2017. EATING PEOPLE!! Totally Accurate Battle Simulator #1! 3 Million

Subs (FGTEEV TABS Gameplay / Skit) [video, online]. YouTube. Available from:

https://www.youtube.com/watch?v=tTnhGE1ZZ1I [accessed 14th May 2018].

Burbeck, S., 2004. Complexity and the Evolution of Computing: Biological Principles for Managing

Evolving Systems [online]. Available from

http://evolutionofcomputing.org/Complexity%20and%20Evolution%20of%20Computing%20v2.pdf

[accessed 16th May 2018].

Gardner, M., 1970. The fantastic combinations of John Conway's new solitaire game "life". Scientific

American, (Issue 223), 120-123.

Conway, J, 2014. Interview. Inventing Game of Life – Numberphile [video, online]. YouTube:

Numberphile. Available from: https://www.youtube.com/watch?v=R9Plq-D1gEk [accessed 15th May

2018].

Ascani, E, 2011. epic conway's game of life [video, online]. YouTube. Available from:

https://www.youtube.com/watch?v=C2vgICfQawE [accessed 15th May 2018].

Chan, C., 2016. This Totally Accurate Battle Simulator Might Be The Most Ridiculous Video Game

Ever. Gizmodo [online], 14th July 2016. Available from: https://www.gizmodo.com.au/2016/07/this-

totally-accurate-battle-simulator-might-be-the-most-ridiculous-video-game-ever/ [Accessed 28th

October 2017].

Duffy, Q., 2016. The making of Company of Heroes: prototypes, design and the 'Donkeyschreck'.

Interview with Tom Senior for PC Gamer [online], 13th October 2016. Available from:

https://www.youtube.com/watch?v=e31OSVZF77w
https://thebests.kotaku.com/the-best-world-war-two-video-games-1755330908
https://www.youtube.com/watch?v=tTnhGE1ZZ1I
http://evolutionofcomputing.org/Complexity%20and%20Evolution%20of%20Computing%20v2.pdf
https://www.youtube.com/watch?v=R9Plq-D1gEk
https://www.youtube.com/watch?v=C2vgICfQawE
https://www.gizmodo.com.au/2016/07/this-totally-accurate-battle-simulator-might-be-the-most-ridiculous-video-game-ever/
https://www.gizmodo.com.au/2016/07/this-totally-accurate-battle-simulator-might-be-the-most-ridiculous-video-game-ever/

http://www.pcgamer.com/the-making-of-company-of-heroes-design-prototypes-and-the-

donkeyschreck/ [Accessed 28th October 2017].

Pegler, M., 1996. British Tommy 1914-1918. 1st edition. London, United Kingdom: Osprey.

Bowman, C and Mollow, S., 2017. M5158475 - German boy soldier POW jeep [photograph].

Harrowgate, United Kingdom: The Inter Group. Available from:

https://www.flickr.com/photos/britishjeep/34626729331/in/photostream/ [accessed 17th May

2018].

Greene, J., 2017. 5 Reasons You Need a Game Design Document. Luminosity, 12th July 2017.

Available from: http://luminositymobile.com/5-reasons-need-game-design-document/ [Accessed 3rd

May 2018].

Autodesk, 2015. Maya 2016. [computer program]. San Rafael, CA, United States: Autodesk.

Pixologic, 2015. Zbrush 4R7. [computer program]. Los Angeles, United States: Pixologic.

EVOlution Graphics, 2009. The-blueprints.com. [website]. Hilversum, The Netherlands: EVOlution

Graphics. Available from: https://www.the-blueprints.com/ [Accessed 15th November 2017].

Unity Technologies, 2015. Unity. 5.6.1f1 Personal. [computer program]. San Francisco, United States:

Unity Technologies.

Microsoft, 2015. Visual Studio 2015. [computer program]. Redmond, WA, United States: Microsoft.

Warhead-Designz, 2015. UniTOON Ultra [download]. Savannah, GA, United States: Warhead-

Designz. Available from: https://assetstore.unity.com/packages/vfx/shaders/unitoon-ultra-26776

[Accessed 4th December 2017].

dotPDN LLC, 2016. Paint.NET. 4.0.12. [computer program]. San Francisco, United States: dotPDN LLC.

Ruok, J., 2015. Gun, Tikka T3 Battue 308 hunting rifle, gunshot, strong 4 [download]. Mudjimba, QLD,

Australia: Zapsplat. Available from: https://www.zapsplat.com/music/gun-tikka-t3-battue-308-

hunting-rifle-gunshot-strong-4 [accessed 7th May 2018].

Blastwave FX, 2015. Grenade explosion, debris, blast [download]. Mudjimba, QLD, Australia:

Zapsplat. Available from: https://www.zapsplat.com/music/medium-large-metal-impact-wobble-2/

[accessed 7th May 2018].

Zapsplat, 2015. Medium large metal impact, wobble 2 [download]. Mudjimba, QLD, Australia:

Zapsplat. Available from: https://www.zapsplat.com/music/grenade-explosion-debris-blast/

[accessed 7th May 2018].

The Audacity Team, 2016. Audacity. 2.1.2. [computer program]. United States: The Audacity Team.

The Band of the Royal Corps of Engineers et al., 2002. Songs of the World Wars [download]. London,

United Kingdom: Knellar Hall. Available from: https://itunes.apple.com/fr/album/kneller-hall-live-

vol-3-golden-jubilee-concert/332012585?l=en [accessed 7th May 2018].

http://www.pcgamer.com/the-making-of-company-of-heroes-design-prototypes-and-the-donkeyschreck/
http://www.pcgamer.com/the-making-of-company-of-heroes-design-prototypes-and-the-donkeyschreck/
https://www.flickr.com/photos/britishjeep/34626729331/in/photostream/
http://luminositymobile.com/5-reasons-need-game-design-document/
https://www.the-blueprints.com/
https://assetstore.unity.com/packages/vfx/shaders/unitoon-ultra-26776
https://www.zapsplat.com/music/gun-tikka-t3-battue-308-hunting-rifle-gunshot-strong-4
https://www.zapsplat.com/music/gun-tikka-t3-battue-308-hunting-rifle-gunshot-strong-4
https://www.zapsplat.com/music/medium-large-metal-impact-wobble-2/
https://www.zapsplat.com/music/grenade-explosion-debris-blast/
https://itunes.apple.com/fr/album/kneller-hall-live-vol-3-golden-jubilee-concert/332012585?l=en
https://itunes.apple.com/fr/album/kneller-hall-live-vol-3-golden-jubilee-concert/332012585?l=en

APPENDICES

APPENDIX A – GAME DESIGN DOCUMENT

APPENDIX B – TESTER GUIDE

APPENDIX C – FORM TO BE COMPLETED BEFORE TESTING

APPENDIX D – TESTER FEEDBACK FORM

APPENDIX E – ETHICS CHECKLIST

