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Abstract

In this paper we consider networks in which the links (edges) are imperfectly observed. This may be a result of sampling, or
it may be caused by actors (vertices) who are actively attempting to hide their links (edges). Thus the network is incompletely
observed, and we wish to predict which of the possible unobserved links are actually present in the network. To this end, we apply
a constrained random dot product graph (CRDPG) to rank the potential edges according to the probability (under the model) that
they are in fact present. This model is then extended to utilize covariates measured on the actors, to improve the link prediction. The
method is illustrated on a data set of alliances between nations, in which a subset of the links (alliances) is assumed unobserved for
the purposes of illustration.
Published by Elsevier B.V.
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1. Introduction

A graph is a pair G = (V , E), where V = {v1, . . . , vn} is a set of vertices (also called “actors”) and E, the edge set
(or “links”), is a set of unordered pairs of distinct vertices (this is a simple graph: we do not allow loops or multiple
edges between vertices). In a directed graph (digraph) the edge set consists of ordered pairs, with (v, w) indicating an
edge from vertex v to vertex w. In this paper we will consider only (undirected) graphs, but the ideas can be extended
to the directed case. As is the convention, we will write vivj for {vi, vj } ∈ E.

The adjacency matrix A = (aij ) is the |V | × |V | binary matrix with a 1 in position ij if and only if vivj ∈ E. Since
we are dealing with imperfectly observed graphs, where potential edges may not be perfectly observed, we encode an
unknown edge with NA. This indicates that the link has neither been observed (1), nor is known to be missing (0).

Usually one assumes that an observed social network is fully observed: the actors and edges are complete and
accurate. Typically the actors are a well defined small set of individuals or entities and the edge structure is easily
obtainable through surveys or open sources. In this paper we consider the case in which the actors are actively trying
to hide their links, or where the links are difficult to observe directly. The actors may have covariates associated with
them which are assumed to be predictive, but not determinative, of the probability of the links between actors. We will
assume that the actor set is known but the covariates on the actors may not always be perfectly observed. Unobserved
covariates are also encoded as NA.
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Given an imperfectly observed graph, one may need to expend resources to attempt to determine if a given link
exists. For example, one may perform further surveys, contact the individuals directly, obtain a court order for a wire
tap, or task a sensor to collect the relevant information. We would like to prioritize these tasks to ensure that the most
likely links are examined first. This is the motivation for the approach we investigate here.

We will model the observed graph using the random dot product graph (RDPG) model described in Kraetzl et al.
(2007), Scheinerman and Tucker (2007) and Marchette and Priebe (2007). This models the probability of an edge
between two vertices according to the dot product of (d-dimensional) vectors assigned to the vertices. In Marchette and
Priebe (2007) the model is constrained so that only a small number of distinct vectors are allowed, forcing the nodes
to group according to their vectors, and reducing the complexity of the model.

The basic idea is to fit the RDPG model to the observed graph, then rank the potential links according to the
probabilities induced by the estimated model. The hope is that the high probability links will turn out to be those that
do in fact exist. This allows for an efficient assignment of resources to disambiguate the unknown relationships, and to
accurately predict the graph from the imperfectly collected one.

To illustrate this approach, we investigate data representing alliances between a total of 173 nations collected from
1816 to 2000 (Gibler and Sarkees, 2004). The data are available at cow2.la.psu.edu, and we provide a processed data
set (with more covariates than are considered in this paper) at www.ams.jhu.edu/∼marchette/igo.tgz. In this latter data
set there are a total of 214 nations, but we will consider only the subset of these which have alliances between them. For
each pair of nations, alliance is coded according to the type of alliance, but we will consider only the existence/absence
of an alliance. There is a graph for each year, and we will treat these graphs independently in this paper, and will
consider only a selected subset for the purposes of illustration. For some discussion of how to treat the time series of
graphs, see Marchette and Priebe (2007).

2. Random dot product graphs

The most common random graph model in the literature is the Erdös–Renyí random graph (Bollobás, 2001), in which
the edges are assumed to be independent. We do not believe that most interesting random graphs have independent
edges, and so we seek a model that relaxes this requirement.

An RDPG is a random graph model (containing the Erdös–Renyí random graph as a sub-model) in which each vertex
vi is assigned a vector xi ∈ Rd . In this paper we will assume that d = 2, but in general part of the model selection task
is to determine the appropriate value of d. The probability of an edge from vi to vj is a function of the dot product of
the vectors:

P [vivj ∈ E|xi, xj ] := pij = f (xi · xj ). (1)

In this paper we will set f to be a simple threshold:

f (x) =

⎧⎪⎨
⎪⎩

0, x�0,

x, 0�x�1,

1, x�1.

The vectors xi are fixed, and new graphs are drawn from the collection of all graphs on n vertices according to the
edge probabilities defined above. This model can be extended to directed graphs by assigning to each vertex two such
vectors: an out-vector xO and an in-vector xI such that p(i, j) = f (xO

i · xI
j ).

One can think of the vectors xi as vectors of covariates associated with the vertices, and one might wonder if these have
any relationship to observed covariates. This is an interesting area for consideration, but we will take a slightly different
approach to observed covariates. We consider the vectors xi to correspond to latent variables, and seek to incorporate
observed covariates within the model in addition to the xi . Assume there are N measured covariates associated to each
vertex, denoted �i for the vector of covariates of vertex vi . We will augment the probabilities in Eq. (1) as

pij = f (xi · xj + ỹi · ỹj ), (2)

where ỹi = yi ∗ �i , and ∗ is component-wise multiplication. Thus the vector yi corresponds to the weight associated
with the covariate �i associated to vertex vi . In this model there are no interaction terms in the model for the covariates.
Define zi = (xi, yi), the vector resulting from appending yi to xi . Then {zi} are the parameters of the model to be
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fit. (In the model without covariates we set zi = xi .) The argument of f is a dot product, and we will write zi · zj for
xi · xj + ỹi · ỹj .

It should be noted that in addition to being a generalization of the Erdös–Renyí random graph, the RDPG is
a generalization of random intersection graphs (Karonski et al., 1999) and a sub-model of latent position models
(Hoff et al., 2002, see also Hoff, 2005 for a very similar model).

Although computationally challenging, fitting the vectors to a given graph or set of graphs is relatively straightforward.
Scheinerman (Kraetzl et al., 2007; Scheinerman, 2005; Scheinerman and Tucker, 2007) gives a linear algebra method
that tries to minimize the Frobenious norm for the edge probabilities, and maximum likelihood is straightforward due
to the fact that the probabilities are conditionally independent, given the vectors. Thus, the likelihood for the purely
latent model is

L(z1, . . . , zn) =
∏
i �=j

p
aij

ij (1 − pij )
1−aij , (3)

with pij as above. (This is the likelihood in the directed graph case. In the case of an undirected graph, the product is
taken over i < j . We will discuss below how to handle NA values in the adjacency matrix.)

Rather than allowing each vertex its own vector, we will assume a small number of distinct vertices, as is done in
Marchette and Priebe (2007). For a graph G= (V , E), a partition is a collection of subsets of vertices P ={P1, . . . , Pk}
such that Pi ∩ Pj = ∅ for i �= j and ∪Pi = V . We will assume the number of partition cells K is known a priori.
In a social network context, these groups might be club membership, interest groups, religious affiliation, or some
unobserved grouping that one would like to discover. Thus, we are provided with a set of labels L, and seek a map
h : V → L. In the case where there are no vertex covariates, the likelihood is given by

L(x1, . . . , xn; P) =
K∏

k,l=1

(f (xk · xl))
ãkl (1 − f (xk · xl))

nkl−ãkl , (4)

where ãkl is the number of edges between vertices from partition cell Pk to partition cell Pl , and nkl is the number of
possible edges: nkl = |Pk||Pl | if k �= l, nkk = |Pk|(|Pk| − 1). In the case of a graph rather than a directed graph we
restrict the product to k� l and nkk = |Pk|(|Pk| − 1)/2.

This reduction does not quite work for graphs with vertex covariates, so in general we will use Eq. (3) with the zi

constrained to be constant on each partition. We will denote the likelihood in either case as L(z1, . . . , zn; P). This
constrained random dot product graph will be denoted as CRDPG.

For fixed (known) values of K and d, a maximum likelihood estimate can be obtained via the following
algorithm:

(1) Start with an initial set of vectors {zj }Kj=1 and an initial assignment of vectors to vertices (a partition P).
(2) For each vertex vi (sequentially), select the partition cell Pj for which, after reassignment of the vertex to Pj , the

likelihood is maximized:

P = arg max L(z1, . . . , zn; P ′),

where the arg max is taken over the K partitions P ′ differing from P by the assignment of vi .
(3) With the assignment P fixed, select the vectors to maximize the likelihood:

(z1, . . . , zn) = arg max
(ẑ1,...,ẑn)

L(ẑ1, . . . , ẑn; P).

(4) Repeat from (2) until convergence.

At each stage of the algorithm, if there are missing values (NAs) in the adjacency matrix, we replace these with the
estimated probability of the edge. The simplest form of this is to use the empirical estimate of the probability of an
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edge between the given partitions. Thus if vi ∈ Pk and vj ∈ Pl we set

âij = 1

|Pk||Pl |
∑
v∈Pk
w∈Pl

I (vw ∈ E),

where I is the indicator function.
Note that the assignment in step (2) of the algorithm is sub-optimal: we only proceed through the vertices once

sequentially, making the current assignment conditional on the previous assignments for the later vertices and the
current assignments of the previous vertices in the list. This can be improved, presumably resulting in an algorithm
that produces fewer iterations, at the expense of extra computation at this step. We will not consider these trade-offs
here.

If instead of the computational strategy taken in (2) we tried all possible partitions (a finite but large number) then
this approach would converge to the maximum likelihood estimate: in effect, we would select the configuration for
which the likelihood is maximum. Instead we are checking a much smaller (greedily selected) subset of configurations,
so the convergence is to a local maximum, not necessarily a global one. Since the number of partitions is finite, this
converges.

Note that in the model without covariates, the least squares estimate for the xi , assuming the partition is given, can
be obtained immediately through the singular value decomposition: assume that each partition contains at least two
elements. Define the reduced matrix M to be the K × K matrix where Mij is the empirical probability of an edge from
group i to group j. This empirical probability is computed using only the known edges/non-edges. Then if we write
M = UDV ′ using the singular value decomposition, the set of the first d eigenvectors in U (scaled by the singular
values) is the optimal (in the least squares sense) choice for the {xi}. If we are in a directed graph, the out-vectors come
from U and the in-vectors from V.

There are several model selection problems to consider. First, one must decide on the dimensionality d of the
vectors xi . In a particular application, this might be in part driven by scientific considerations. One may hypoth-
esize that there are two main factors defining the relationships, and thus choose d = 2 and observe the model
fit. It should be noted that we want to pick d as small as possible, due to the additional variance in the estima-
tors as the dimension increases. For the purpose of this work we will set d = 2, as was done in Marchette and
Priebe (2007). Investigation of higher values of d showed no significant improvement in the models. We will also
constrain K = 2, 3 as in Marchette and Priebe (2007). See that paper for more details about the model selection
problem.

3. Results

The data correspond to 185 graphs, one per year. We will consider each year independently. Two of these graphs are
depicted in Fig. 1. Fig. 2 shows the results of two CRDPG models fit to the data. The y-axis is the loglikelihood scaled
by the number of possible edges in the graph. This allows the comparison of the models across time by removing the
variability caused by the different number of non-isolated vertices. As can be seen, there is little difference between
the K = 2, 3 models until the spike which occurs in 1936, after which the K = 3 model tends to do better. The vertical
gray lines indicate the years upon which we will focus in this paper: 1866, 1886, 1906, 1936, 1941, 1950, 1970, 1977,
1990 and 1995. These years were chosen somewhat arbitrarily, but also focus both on areas where the two models agree
(in likelihood) and where they disagree, as well as providing examples with various numbers of missing covariates
(described below).

To evaluate the quality of link prediction in the CRDPG model, we use a methodology described in Hoff and Ward
(2007):

(1) Split the set of potential edges into S disjoint sets (we will use S = 4 in this study; the edges are assumed to be
missing at random).

(2) For each set, treat these edges as unknown by placing NA in the adjacency matrix.
(3) Estimate the CRDPG, and retain the probability associated with each missing (potential) edge.
(4) Rank the potential edges by their probabilities, and plot the number of tested edges against the proportion of true

edges tested.
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Fig. 1. Two of the alliance graphs, 1866 and 1941. The 1941 graph consists of two components: a complete graph on 21 vertices (the US and its
Latin American allies) and a sparse graph on 23 vertices with 45 edges, corresponding to Europe and Asia.
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Fig. 2. Scaled loglikelihood values for K = 2, 3 across time. Each loglikelihood is scaled by the number of possible edges: |V (t)|(|V (t)| − 1)/2,
where V (t) is the set of non-isolated vertices at time t. The black curve corresponds to the K = 2 model; the gray curve corresponds to the K = 3
model. The vertical gray lines correspond to the years considered in the study.

This experiment is run 100 times (with different splits each time) to obtain an estimate of the confidence intervals
for the predictions. In the fitting algorithm, the missing edges are imputed by the average of the probabilities for the
corresponding groups, as discussed above. Fig. 3 shows one such run, for the year 1866.

We consider the two models, K = 2 and 3 with and without actor covariates. The covariates used are the amount of
spending on the military, the amount of spending on energy, and a ±10-point “democracy score”. These covariates are
first scaled as follows: for the first two, we transform the value � by taking log(�+ 1)+ 1. For the democracy score we
shift so that the values range from 1 to 21. Finally, for each graph, each covariate is scaled so that it attains a maximum
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Fig. 3. An example of the results of 100 4-fold crossvalidation runs for the year 1866. The dark gray region is the empirical 90% confidence interval,
and the light gray region shows the envelope of the runs. The mean is depicted as a solid curve. The y = x line is shown for comparison purposes:
this is the optimal curve obtained when each suspected link checked turns out to be a true link.

of 1. The plots in Figs. 4–7 show the results. Each year is depicted with two plots, one for each model. In each plot,
the model using covariates is added as dashed/dotted curves indicating the mean and envelope for the model which
incorporates covariates.

These plots show that, for the most part, about the first 40% or more of the links tested turn out to be true edges in
the graph. This is a result of the tendency of these graphs to cluster. A graph that has two or three highly connected
groups with relatively few edges in between would have the property that it would be relatively easy to predict missing
edges, provided that one had identified the groups correctly. This seems to be the case for many of the graphs in
the alliance data set. Note also that there is quite a difference in variability in the different years. This is associated
with the amount of clustering: years consisting of relatively tight clusters (highly interconnected with few between-
cluster ties) tend to have low variability in the crossvalidation, while loosely clustered or sparse graphs have high
variability.

Note that the prediction performance does not completely agree with the likelihood on the question of model
complexity. For example, in the years 1866 and 1886, where the two models (K = 2, 3 without covariates) have
essentially the same likelihood (see Fig. 2), the more complex model produces a better prediction performance. This
is because there is a trade-off between the reduction in variance provided by the “averaging” of information across the
larger groups in the smaller model, and the reduction in bias provided by the better granularity of the larger model. The
model selection performed in Marchette and Priebe (2007) used full edge information; it is not unreasonable that with
missing edges a different level of complexity might be warranted.

Adding covariates to the model does not appear to improve the prediction, except possibly in 1886, K = 2. Even in
this case, the improvement is not significant, and in that same year the K = 3 model shows a reduction of performance
using covariates. One possible reason for this is that we have chosen covariates that are not well correlated with the
attribute we are trying to predict. We did a small test to determine whether increasing the number of unknown edges
would effect the performance, and the results are depicted in Fig. 8. Here, 50% of the potential edges are presented as
unknown, and as can be seen there are several cases in which adding the covariates provides significant improvement
in prediction. Thus we infer that the covariates are of some value in prediction.

There are missing values in the covariates (Table 1), and this was not taken into account in the above analysis. Thus,
another potential reason for the lack of improvement in the 4-fold crossvalidation results is these missing covariate
values. The number of missing covariate values is depicted in Fig. 9 and in Table 1. In the above model, missing data
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Fig. 4. Results for 100 4-fold crossvalidation runs for the years 1866, 1886 and 1906. These are paired by year, with the first plot corresponding to
the K = 2 model, and the second plot corresponding to the K = 3 model. In each case, the results corresponding to the incorporation of the three
covariates is overlayed as dashed curves indicating the means and dotted curves indicating the envelope.

were treated as 0 and thus did not effect the value of the probability obtained from the dot product (that is, we obtain the
same value for the probability in the case of a missing value as we would if we did not utilize covariates in our model).
We can try to mitigate this problem through a very simple imputation: if a value of a covariate is missing for a node
in a given year, we replace the value with the last value for that covariate for that node in the past. The dotted curve
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Fig. 5. Results for years 1936, 1941 and 1950.

in Fig. 9 shows the number of values still missing after using this simple imputation. Thus, there are some covariate
values which are not observed for several years after the nation enters the graph.

Table 1 provides statistics on the years and shows the number of covariates that could be imputed using the temporal
imputation. This analysis shows that while using past information can help fill in unknown covariates, there are
countries which start out with unknown covariates, and so this alone cannot solve the problem. Also, there are trends
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Fig. 6. Results for years 1970, 1977, and 1990.

in the covariate values, so even for those with past information, one should fit a model to the past data in order to
predict the current values. This requires a model selection step, followed by a fitting of the model and imputation of
the covariate value(s).
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Fig. 7. Results for the year 1995.

Fig. 10 shows the first covariate, associated with military spending, for the United Kingdom. This shows long-term
and short-term trends. Some short-term trends (around the two world wars, for example) are quite dramatic.

Instead of this time series approach, with the additional complication of the model selection on the time series of
covariates, we ignored the temporal nature of the data and took a maximum likelihood approach to the missing data
problem: we impute the missing values within a single graph as those for which the resulting likelihood is maximized.
We hypothesize that by properly utilizing past information we could improve this imputation, but will not pursue this
here.

To evaluate the use of covariate imputation, we consider those years in which the largest percent of values are
missing: 1866 and 1995. The year 1941 also has a large number of missing attributes, but the prediction quality is
so good for this year that there is little room for improvement. This graph has two components, one a clique of 21
nations (the US and its allies) and a loosely connected component corresponding to the rest of the world (see Fig. 1).
The large clique explains the good performance of the edge prediction: edges missing at random in the clique are easy
to predict.

The results for the two years in which attribute imputation was performed is shown in Fig. 11. The improvement
provided by imputation is dramatic in 1995, where the largest number of missing covariates occurs.

4. Discussion

We have demonstrated how a simple model of networks, the dot product model, can be extended to utilize covariates,
and can be used to predict the existence of unobserved edges, the idea being to prioritize resources expended to verify
the unobserved edges. This paper dealt with edges missing at random (MAR); this may not be the best model for covert
networks, where the nodes are actively attempting to hide their relationships. We have seen that adding appropriate
covariates can improve the performance of the system, and have discussed some methods for dealing with missing
covariates. Although we did not address this directly here, it is obvious that we could turn the probabilities around and
rank the potential links that are most likely to truly be missing, although it may be harder to verify that a link is not
present than it is to verify that it is.

The procedure has very different performance on the different years, and this is primarily due to the structure of the
graphs. For example, in a graph consisting of cliques or near-cliques (such as 1941 in Fig. 1, see Fig. 5) prediction is
relatively easy, since most potential edges in the dense regions are in fact true edges. In sparser graphs, covariates must
be incorporated to correctly predict which of the missing edges is in fact a true edge.
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Fig. 8. Results for 100 2-fold crossvalidation runs for the 10 years studied. These are paired by year, with the first plot corresponding to the K = 2
model, and the second plot corresponding to the K = 3 model. In each case, the results corresponding to the incorporation of the three covariates is
overlayed as dashed curves indicating the means and dotted curves indicating the envelope.
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Table 1
Statistics for the years considered in the experiment

Year |V | |E| #Missing covariates % Missing #Imputed

1866 11 10 8 24.2 0
1886 10 14 0 0 0
1906 11 13 0 0 0
1936 50 264 0 0 0
1941 44 255 26 19.7 25
1950 54 327 0 0 0
1970 87 517 3 1.1 2
1977 104 716 9 2.9 4
1990 116 1124 22 6.3 8
1995 119 1082 122 34.2 95

The number of non-isolated vertices and edges for the graphs are presented, as are the total number of missing covariates for the actors that year.
The final column refers to the number of covariates that could be imputed via the temporal imputation method: fill in the most recent value, if any,
for that covariate for that actor.
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Fig. 9. Number of missing values in the covariates. The dashed curve shows the number of covariates missing after the simple imputation.
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Fig. 10. Covariate values (log(military spending + 1) + 1) for the United Kingdom.

In a “real-world” system, one would recompute the probabilities after the edges had been verified. This would result
in an iterative procedure, in which the algorithm proposes a list of potential relationships, a subset of these are checked
directly (to the extent possible), and given this new information the algorithm is re-run to provide a new list of potential
links. This would be easy to implement within the given framework.
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Fig. 11. Results for 100 4-fold crossvalidation runs for the 2 years studied using maximum likelihood for imputing missing covariates. The figures
are as in Fig. 4. The years considered are 1866 and 1995.

We have not utilized the temporal nature of the data, except to note that simple temporal imputation of covariates
may not be optimal (see Figs. 9 and 10 and Table 1). Time can be used to help predict edges, as well as covariates, and
averaging edges across time can improve the estimation accuracy of the CRDPG model. Utilizing time series of graphs
may also provide one method for approaching the problem of detecting missing nodes.

This procedure can be framed as an optimization of the reconstruction risk P(g(v, w)|vw /∈ E) where g(v, w) is
the edge prediction. The time series nature of the particular data set we investigated makes it a natural for a Bayesian
approach. On can use the previous year’s data in the formulation of a prior for the present year’s graph, and choose the
edges to maximize the posterior. This is an area of future research.

Our criterion for positing a link is based purely on the probability of the link. In many situations, one may have a
statistical inference task, and may be interested in checking those links which would have the greatest impact on the
statistical inference to be made. This is an area for future research.
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