Bar X Range Allotment Analysis

1978

Outline

- I. Introduction
- II. Current Status and Use

Livestock - Kind, Class, Number and Season of Use Grazing System and Current Management Vegetative Condition and Trend Forage Production and Current Utilization Grazing Capability

III. Resource Description as Related to Grazing Use and Range Management

Geology Climate Soils Vegetation Wildlife Watershed

- IV. History of Use
- V. Actual Use Records
- VI. Management Goals and Objectives
- VII. Management Alternatives
- VIII. Proposed Hanagement System

I. Introduction

The Bar X Ranch is currently comorised of four grazing allotments: Bar X, Haigler Creek, Young and Colcord, hereinafter referred to as the Bar X. These allotments have been combined into one ranch unit and managed as a single operation. The ranch is dissected by the Heber-Reno Sheep Driveway, from the Valnut Well, west of Young, to the Mogollon Rim.

The Bar X is quite variable in topography and type of terrain. Approximately 30% of the area is rolling, gently undulating slopes broke by several, minor drainages and canyons. The remainder of the ranch is quite steep and rocky. Rock bluffs. outcroppings and 70% to 90% slopes are common along Haigler Creek and Naegelin Rim.

Rolling topography near Bar X Headquarters.

Vegetative types found on the allotment are as follows: (1) pinyonjuniper, (2) ponderosa pine, (3) grassland, (4) Chaparral, and (5) riparian. The pinyon-juniper and grassland types at present have the highest potential to produce desirable forage. However, under current management and the high level of stocking, much of the forage consumed by livestock on the Bar X is comprised of browse in the chaparral type

Climatic conditions were quite variable during the range analysis peri (1976 through 1977). During 1975, rainfall was below average especially during the growing season. Precipitation during 1976 increased as it did in 1977. Growing season precipitation was above normal in both 1976 and 1977. The "normal" annual precipitation at the official weather recording station in Young is 19.37 inches. The growing season precipitation average is 8.0 inches. The following chart indicates precipitation levels prior to and during the range analysis period:

Andreas and a second	Total Annual Precipitation January-December	Total Growing Season Precipitation July-September
38 year average	19.37	8.0
1971	18.66	10.44
1972	21.96	4.85
1973	17.56	3.61
1974	16.99	5.84
1975	14.35	3.95
1976	19.90	8.97
1977	16.51	10.15

Range condition on the Bar X is generally poor with a downward trend. Small areas of fair and very poor range condition may be found; a downward trend also occurs on these areas. The woodland/grassland areas at the lower elevation zones (5500-5900 feet) are rapidly deteriorating under current stocking levels. A prolonged history of overstocking and unsatisfactory management has depleted the range resource to a very critical point. At present, most areas still have an existi seed source of the more desirable range plants. Consequently, through protection from overgrazing for an extended period of time, range condition improvement could occur. The pine-type is severely depleted. Ground cover is adequate, however, composed predominantly of ponderosa pine needle-cast. Grass and desirable forb cover is often nonexistant in many areas. The overall browse resource is in poor condition due to hedging and overuse of the desirable browse species. Steep slopes and areas which would normally be ungrazed with proper stocking are currently utilized extensively because of the lack of sufficient forage in the grazable zones.

During the early 1960's, the Bar X was grazed under a continuous yearlong system. In the mid 1960's, a management system in conjunction with an extensive juniper control project was implemented. The system provided rest for each unit one year out of four. The excessive stock rate caused the management system to fail due to a lack of sufficient forage. When the cattle were placed into a unit, there was not enough forage to sustain them during the desired period of use. At present, nonuse for convenience has reduced the grazing pressure only slightly. Consistent overstocking has reduced grazing capacity each year and has resulted in a denuded watershed with intolerable soil loss. The present system of management provides deferment to several pastures, although nearly all pastures are grazed each year. The current grazing system is not working satisfactorily. Erosion is continuing due to the lack of vegetative ground cover because of overgrazing.

The Bar X range analysis was conducted by two Pleasant Valley Range Conservationists over a period of three years. Charles E. Shipp, Range Conservationist, conducted the Range Condition Trend Studies in 1975. He was assisted by Del Stott, S.O. Range Sub-Staff and James Webb, Pleasant Valley District Ranger. Bar X ranch foreman, James Hackett accompanied Charles Shipp on two occasions during the field portion of reading the clusters. The vegetative typing, subtyping, range condition classing and grazing capabilities were determined by Richard Kvale, Range Conservationist during 1977. Del Stott Joseph A. Chiarella, Pleasant Valley District Ranger, and Andy Travers Range Conservationist assisted occasionally in the mapping process. Soil resource inputs from both S.O. Soil Scientists and R.O. Soil Scientists were utilized in determining grazing capability. Bar X ranch foreman, Francis Cline, accompanied Rich Kvale occasionally during the field mapping.

The range *Grazing Capability classification breakdown is as follows:

No Capacity 24,654 acres Potential Capacity 4,813 acres Full Capacity 742 acres

The current status of the <u>Full Capacity</u> acreage on the Bar X in terms of range condition and trend is indicated below.

Very poor range condition - downward trend 167 acres Poor range condition - downward trend 412 acres Fair range condition - downward trend 163 acres Good range condition 0 acres Excellent range condition 0 acres

Current utilization is extremely high and often exceeds 80% in key areas. The Production-Utilization Studies in 1973, 1974, and 1975 indicate extreme utilization 80-90% in key areas such as canyon bottoms and riparian zones. Utilization was also extreme (70-80%) on most open mesas, juniper areas and grassland areas. During 1976 and 1977, utilization remained excessively high, even under quite favorabl moisture conditions and convenience nonuse for 34 cattle in 1976 and 89 cattle in 1977.

* Current Region 3 Grazing Capability classifications are broken into three (3) catagories, "No Capacity" (NC) "terrain which is incapable of being grazed by domestic livestock on a sustained yield basis under reasonable management. "Potential Capacity" (PC) "terrain which is presently undergoing accelerated erosion because it does not have sufficient effective ground cover to protect the soil". "Full Capacity" (FC) "terrain which is presently stable because effective ground cover is holding soil loss to an acceptable level".

(3)

Extensive areas of vertisol activity (churning soils) have developed as a result of top soil and plant loss caused by excessive forage util zation. The nearly total removal of herbaceous plant material and perennial grass die-off has resulted in a lack of adequate effective ground cover.

Consequently, accelerated sheet erosion is common throughout the allotment. As the lower horizons of the soil profile (which are high in clay content) become exposed, a churning action begins that may, in fact, be impossible to arrest or rehabilitate.

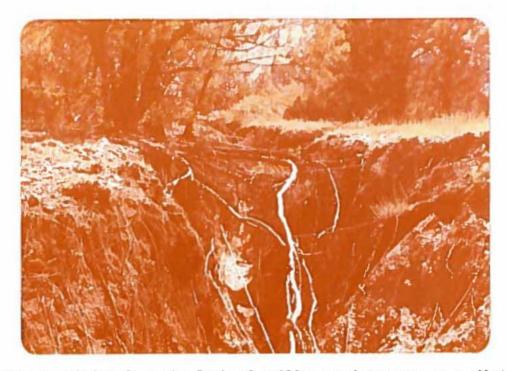
In conjunction with a continuing depletion of vegetative cover through livestock use, the mechanical control of juniper with a bulldozer has exposed the clay horizons of the soil profile and has accelerated the vertisol activity.

Watershed conditions are quite deteriorated throughout the woodland zone of the Bar X. A lack of effective ground cover allows extensive, rapid run-off, causing sheet erosion and gully erosion. Livestock trampling has caused some soil compaction, compounding the run-off problem affected by over utilization of grass. Extensive run-off has reduced plant available moisture in the soil and undoubtedly has reduced ground water recharge. This is evidenced by many dry denuded riparian areas that were at one time dotted with springs.

Wildlife habitat has been damaged significantly by the removal of herbaceous plant cover (grass) and often by direct livestock/wildlife competition for food.

II. Current Status and Use

Livestock - Kind, Class, Numbers and Season of Use


The current term permit for the Bar X provides for 468 cattle yearlong and all of the yearling progeny (NI) for 10 months. Until December 31 1977, 10 horses yearlong have been permitted by Free Use Permit. Each of the allotments and the respective term permit numbers are shown below by kind, class, and season of use:

Number Of Livestock	Kind Of Livestock	Class Of Livestock	Kind Of Permit	Period From	of Use To	Grazing Allotment
188	Cattle	Adult	Term	1/1	12/31	Bar X
107	Cattle	Yearlings	Term	1/1	10/31	Bar X
35	Cattle	Adult	Term	1/1	12/31	Colcord
163	Cattle	Adult	Term	1/1	12/31	Young
75	Cattle	Yearlings	Term	1/1	10/31	Young
82	Cattle	Adult	Term	1/1	12/31	Haigler Cr.
25	Cattle	Yearlings	Term	1/1	10/31	Haigler Cr.

Grazing System and Current Management

The current grazing system provides occasional yearlong rest for the pine type ranges, however, each pasture in the Woodland Zone is graze during the year. At present a deferment system is being used which provides seasonal deferment for some units during July through September. Livestock are often scattered throughout the allotment without compliance to specified management. This results in the loss of the expected benefits from grazing deferment. The current stocking rate is too high to enable implementation of a grazing system that wi provide resource protection and a favorable impact upon range condition.

Maintenance of range improvements on the Bar X during the past has be poor. Fence repair and other improvement maintenance has improved slightly during 1976 and 1977. The maintenance of stock tanks has be quite poor. Often the stock tank maintenance provided by the permitten has nearly resulted in the destruction of the improvement.

Gully resulting from the lack of spillway maintenance on a dirt tank.

Prior to 1976, salt was located on nearly all watering facilities. The permittee was instructed to remove the salt from water and did so. Un current overstocking, the use of salt as a distribution tool is of no great value. At present, the search for forage by livestock has distributed grazing into all of the accessible areas and most of the seer ingly inaccessible areas leaving little to gain from an attempt at distribution using salt. Unauthorized use occurred on the Bar X in 1975 (389 AUM's). Mr. Hamilton, permittee, had taken non-use for a portion of his livestock permitted by term permit, but the livestock were not removed from the allotment at the beginning of the grazing year, nor until the livestock were discovered by the Forest Service during Mr. Hamilton's grazing application in 1976.

Salt in Naegelin Canyon, a normal livestock concentration area because of the presence of water.

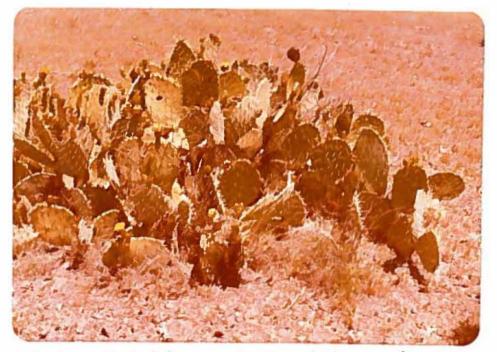
Vegetative Condition and Trend

The four allotments which make up the Bar X, cover a total of 30,208 acres (NF). Of this acreage, 4,813 acres are classed as Potential Capacity, 742 acres are classed as Full Capacity, and 24,654 acre are classed as No Capacity. Of the Full Capacity acreage, poor range condition exists on 412 acres (56%), very poor range condition exists on 167 acres (22%) and fair range condition on 163 acres (22%). Trenc is downward on all areas inventoried. All of the range condition clusters on the Bar X, Haigler Creek, Colcord, and Young Allotments indicate a downward trend. A comparison of the range trend transect data from 1966 and 1975 portrays a continuing degradation of the range resource. In 1966, 2.7% of the suitable acres (13,018 acres) rated very poor in a downward trend, 81.5% were in poor condition with 80% in a downward trend and 20% with no apparent trend, 15.8% were in a fair condition with a downward trend. Eleven years later, in 1977, 22% of the full capacity acres were in very poor condition, 56% in poor condition and 22% in fair condition, all with a downward trend. During the elapsed time from 1966 to 1977, range deterioration was so extensive that land capability to support grazing was drastically reduced. Of the 13,018 acres determined to be capable of sustaining grazing in 1966, only 742 acres have enough ground cover to sustain grazing in 1977.

The downward trend in range condition, apparent over all of the allotment is reflected in the transect measurement data. The following summary indicates the change in hits* from 1966 to 1975.

		Bar X		Haig	ler Cr	·. Yo	ung	Col	cord	
	C2	C3	C4	C1	C2	C1	C2	C1	C2	Total
Forage Plants	-10	-35	0	-16	-18	-13	-36	-4	-5	-137
All Plants	-12	-35	0	-15	-9	-13	-36	+4	-11	-131
Litter	-33	-7	-26	-39	-33	-57	0	-42	-9	-246
Bare Soil	+44	+66	+47	+45	+23	+86	+42	+44	+31	+428

The table indicates the change in hits either increase(+) or decrease (-) from 1966 to 1975, ie. (1966) 20/(1975)10 = -10 or (1 04/(1975) 88=+44. Taken from Cluster Summary Sheets.


This clearly indicates a reduction in the number of plants and litter along the transect lines with a corresponding increase in the amount c bare soil. The reduction in hits on plants and litter during the 9 ye period between transect readings illustrates the decline in effective ground cover through the years. It also demonstrates the downward tre in range condition resulting in unacceptable soil loss and a damaged watershed.

Plant vigor throughout the four allotments is extremely low due to excessive utilization. Under heavy grazing, grass plants have been unable to sustain sufficient root growth. As a result, during very dry periods such as 1973 and 1975 grass plant mortality is quite high.

* Hits: That material encountered within a 3/4" loop, whether vegetativ (live root crown or overstory), litter (naturally occurring vegetative material on the soil surface, must effectively cover the soil surface, normally to a depth of 1/2" of greater), rock (rock fragments greater than 3/4" diameter, which cover more than 1/2 of the loop) or bare soi (bare soil covering more than 1/2 of the loop).

Forage Production and Current Utilization

Forage production in the Woodland Zone (Oak Woodland and Pinyon-Junip types) is quite low in comparison to the potential of the area. The soil resources inventory estimates the forage production potential fo the area (soil mapping units #60, #61, #66, #63, #20, #74, #401, and #151) is 1500 lb/acre. Present production varies from 75 lb/acre to 350 lb/acre. The heavy grazing pressure by livestock has reduced vigor and plant density to a point far below the site potential.

Grass plants protected from grazing by prickly pear (<u>Opuntia</u> spp. Blue grama (<u>Bouteloua gracilis</u>) and hairy grama (<u>B. hirsuta</u>) domin the unprotected site while bottlebrush squirreltail (<u>Sitanion hys</u> cane beardgrass (<u>Andropogan barbinodis</u>), sideoats grama (<u>B. curtij</u> <u>dula</u>) and plains lovegrass (<u>Eragrostis intermedia</u>) are found in the protected site.

Grass production in the pine type is extremely low, often less than 50 lb/acre. Historic and current over-utilization, heavy needle-cast buildup and canopy overstory have reduced forage production drastical Forage production under improved conditions may never be significant. The soil resource inventory indicates a forage production potential or 250 lb/acre or less in soil mapping units #157 and #162. However the riparian zones in the pine type (soil mapping unit #22) in the soils inventory are listed as producing 75 lb/acre with a potential to produ 2,000 lb/acre. These areas are, of course, natural livestock concentration areas, receiving approximately 90% utilization each year.

Grazing Capability

The Bar X range trend studies were conducted under the guidelines and procedures provided in the 1970 Range Environmental Analysis Handbook R-3.

Condition typing, subtyping and capability were conducted as provided in the 1978 Range Analysis Handbook - R-3. Grazing capability was determined through the two methods outlined in the Range Analysis Handbook - 1) ocular method and the 2) erosion hazard method. All initial field mapping was done utilizing the ocular method.

Mapping delineations derived from the ocular method were checked again the erosion hazard method (Universal Soil Loss Equation - USLE). Duri the initial field work, slope and ground cover measurements were taken for later application of the erosion hazard method. The erosion hazar method utilizes slope, slope length, storm intensity, soil property, and ground cover data in an empirical computer model which provided guidelines for determining grazing capability based on soil stability.

The use of the erosion hazard method on those mapping units classified as <u>Full Capacity</u> (FC) under the ocular method indicated soil loss potential high enough to warrant a <u>Potential Capacity</u> (PC) designation The empirical information derived from USLE indicates 742 acres on the Bar X and Heber-Reno Sheep Driveway are <u>Full Capacity</u> and the remainde either <u>Potential Capacity</u> (PC) or <u>No Capacity</u> (NC). Existing guidelines for R-3 in the Range Allotment Analysis Handbook state that grazing capacity estimates must be based on Full Capacity acres only. Mapping units delineated in a Production-Utilization Study should not be assigned an allowable use if the unit is <u>Potential Capacity</u> range. The reason, of course is the fact that sufficient ground cover is not present to prevent unacceptable soil losses.

The grazing capability of various sites on the Bar X and the Heber-Ren Sheep Driveway is specified on the allotment analysis map and determined by the following guidelines:

<u>No Capacity - NC</u> - Terrain which is incapable of being grazed by domestic livestock on a sustained-yield basis under reasonable management goals. This includes areas under natural condition that are not capable of producing vegetation, soils that are not capable of producing more vegetation than is needed to prevent unacceptable accelerated erosion, <u>Full Capacity or Potential Capa-</u> <u>city</u> islands within NC areas. Dense brushfields and extremely steep slopes are delineated as NC in the Bar X Allotment Analysis. Examples of this type are found in the Oxbow Unit.

Emory oak, manzanita and juniper form an extremely dense thicket which greatly impairs mobility. These sites are also normally located on slopes of 30% to 90%. Much of the pine type is delineated as NC because of steep slopes (40%+) in conjunction with a lack of forage. The pine type is quite steep, broken country with dense reproduction of pine. Needle-cast is two inches deep with herbaceous forage nearly absent. Often, both herbaceous cover and needle-cast are lacking in the pine type allowing extensive erosion.

Total No Capacity on Bar X - 24,654 acres NF.

Pine type in Clay Springs area.

Potential Capacity - PC - This grazing capability class was applied by the following criteria:

- Terrain which is presently undergoing accelerated erosion because it does not have sufficient vegetative ground cover to protect the soil.
- Riparian zones which are severely denuded and cannot be grazed at present without additional resource damage.
- Terrain which cannot be grazed until forage plant density increases. Ex. gentler slopes of Naegelin Rim in the Pine Type.

Total Potential Capacity on Bar X - 4,813 acres NF.

Full Capacity - FC - Terrain which is presently stable because effective ground cover is holding soil loss to an acceptable level. These are the areas used to compute gross estimated grazing capacity.

Total Full Capacity on Bar X - 742 acres NF.

In cases where grazing capability was questionable, the area was designated as "Full Capacity" rather than "Potential Capacity".

Naegelin Canyon Turkey Plot (behind fence) - Note the amount of silt which has accumulated (foreground) in the fence. The thermos (in the center) is 18 inches tall. Originally the top of the fence post was 5 ft. above the soil surface and is now only 3-1/2 ft. above the soil surface.

Evaluation of Cover Factors

vs.

Soil Loss in Determining Grazing Capability with the Universal Soil Loss Equation (USLE)

Of									×	%	
rea							Current	Allow.			
n	Soil	%	%	%	% Coarse	Bare	Soil	Soil	Good	Good	Capability
<u>nit</u>	Unit	Slope	Veg.	Litter	Fragments	Soil	Loss	Loss	Cover	Cover	Classificat
9.1	60	5	20	1	5	69	3.6T/a	2T/a	26	45	Potential 🗘
2.3	66	6	22	9	2	64	5.1T/a	2T/a	33	60	Potential Ca
1.2	68	2	13	5	6	70	1.2T/a	2T/a	24	20	*Full Capac
4.2	162	40	12	45	6	20	7.3T/a	2T/a	63	95	No Capacity
5.4	61	25	23	1	9	58	29.3T/a	2T/a	33	85	No Capacity
.7	22	2	5	58	10	27	.2T/a	2T/a	73	15	Full Capaci
9.0	74	30	25	6	15	39	15.1T/a	2T/a	46	85	No Capacity
2.9	75	35	25	5	16	39	15.1T/a	2T/a	46	90	No Capacity
.4	50	5	25	4	17	37	1.1T/a	lT/a	46	50	Potential Ca
2.1	151	25	28	10	15	47	13.3T/a	2T/a	53	80	No Capacity
5.3	157	4	9	46	9	27	1.5T/a	2T/a	64	50	Full Capaci
5.0	161	60	10	67	6	20	30.4T/a	2T/a	83	95	No Capacity
2.1	21	2	15	58	11	5	.2T/a	2T/a	84	0	Full Capaci:
.7	20	2	36	2	2	54	.5T/a	2T/a	40	5	Full Capaci
6.0	165	50	10	57	10	13	7.4T/a	2T/a	77	95	No Capacity
3.3	601	25	20	30	18	14	9.5T/a	1T/a	55	80	No Capacity
4.4	602	50	20	38	14	_14	17.7T/a	1T/a	60	90	No Capacity

* 30% of soil unit 68 are Udorthentic Chromosterts with vertic properties with a current erosion rate of 2.8 T/a.

						-							1
$\begin{array}{c} R \ FACTUR = 106.000 \\ K \ FACTUR = 106.000 \\ K \ FACTUR = 1000 \\ R \ FACTUR = 1000 \\ P \ FACTUR = 10000 \\ P \ FACTUR = 10000 \\ P \ FACTUR $						ERO SOI	SIDH BY SLOPE-LENGTH L NAME HUG1,74,75-N	AND CUYER	FACTOR				
COVER FACTOR SLOPE				KF	ACTOR =	470	SURFACE COVER TYPE	= G	CRE			(75)	
SLOPE SLOPE <td< td=""><td></td><td></td><td></td><td>. 0</td><td>5,0</td><td></td><td>PER CENT GOOD GROUND</td><td>COVER</td><td>30,0</td><td></td><td>40,0</td><td></td><td></td></td<>				. 0	5,0		PER CENT GOOD GROUND	COVER	30,0		40,0		
$ \begin{array}{c} \text{SLOPE} \\ \text{SLOPE} \\ \text{SLOPE} \\ \text{SLOPE} \\ \text{LENGTH} \end{array} \begin{array}{c} \text{SLOPE} \\ \text{FACTOR} \end{array} \\ \begin{array}{c} \text{SLOPE} \\ \text{SLOPE} \end{array} \\ \begin{array}{c} \text{SLOPE} \\ \text{SLOPE} \end{array} \\ \begin{array}{c} \text{SLOPE} \\ \text{SLOPE} \end{array} \\ \begin{array}{c} \text{SLOPE} \end{array} \\ \begin{array}{c} \text{SLOPE} \\ \text{FACTOR} \end{array} \\ \begin{array}{c} \text{SLOPE} \end{array} \\ \begin{array}{c} $						÷.	COVER FI	CTOR					- A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SLOPE FR,CENT				.3250	2680	,2250	,1600	,1460	.1160	,1000		
		100.0 100000000	4.020 020 020 7.020 1.0200 1.02000 1.0200 1.0200 1.0200 1.0200 1.02000 1.02000 1.02000 1.0000000000	01122334455667 4764514477722777 3.449921635467	691267512 91267512 1077777 32677777 32677777 32677777 32677777 32677777 32677777 32677777 32677777 32677777 32677777 326777777 32677777 326777777 326777777 326777777 326777777 32677777 32677777 32677777 32677777 32677777 32677777 326777777 32677777 32677777 32677777 32677777 326777777 326777777 326777777 326777777 326777777 326777777 326777777 326777777 3267777777 3267777777 326777777 3267777777 326777777 326777777 326777777 326777777 326777777 326777777 326777777 32777777 327777777 327777777777	53.44 77.42 1044.59 1034.59 1034.59 2337.40 2337.40 2357.40 2359.04 3359.26 1.9 401.9 401.9 402.1	45.20 30.17 65.17 55.03 87.84 74.16 112.7 95.19 139.3 117.6 167.1 165.2 224.5 187.6 253.4 214.0 281.9 238.1 309.9 261.7 337.2 264.7 363.5 306.9 368.8 326.3	32.14 46.34 62.47 80.16 99.06 116.6 139.1 159.7 180.2 200.4 239.8 258.5 276.5	29.33 42.29 57.00 73.15 90.40 106.4 127.0 145.7 164.4 183.0 201.1 216.5 252.3	23,30 33,60 45,29 58,12 71,02 84,15 100,5 115,8 130,6 145,4 159,8 173,8 167,4 200,4	20,096 20,96 20,96 20,96 20,97 2	16.27 23.46 31.62 40.50 50.15 50.15 50.15 50.53 91.22 101.5 111.6 121.6 121.6 130.6 140.0	1

E CALLER CA

An and a second s

¢)				U	- Q		ن			J .		
		×			E R 50	DSION ET SLOPI IL NAME - 260,0	E*LENGTH A: 66,65,	D COVER FI	10101	1 - ****	5%	Aug (60	0+6
			5 K K	FACTOR = FACTOR = FACTOR =	106,000	PERC IT CAN SURFACE CO ERCSION UN	VER TYPE	= 25 = G = TONS/AC	RE	e nation — a		V. cy C	. 4 .5
			. 0	5.0	10:0	PER CENT GOO	20.0 GROUND CC	25.0	30.0	.35.0	40.0	45,0	
					2 - 22		COVER FACTO)R	a - 4		and a	ala na sas	-
SLOPE PER.CENT	SLOPE Length	SLOPE-LEAST FACTOR	". ⁴ 500	,3250	2680	.2250	,1900	,1600	-,1460	.1160	.1000	.0810	
900000 9111 9111 9111 9111 9111 9111 91	175.00 175.00 175.00 175.00 177.0000000000	625055 2575 2575 2575 1.755 1.755 2.575 3.717	1.772 n.950 1.9.01 1.9.49 27.25 3.10 7.10	1,371 3,830 8,657 14,31 21,08 29,05 38,31 45,63 60,19	6.644 11.00 17.39 23.99 31.59 40.15	5,578 FC 9,907 14,60 20,14 26,52 33,70	17,01 22,39 20,40	6749 1.885 3.566 7.045 10.38 14.32 18.86 23.97 24.63	6150 1,721 3,619 6,429 9,472 13,07 17,21 21,87 27,04	4873 1,367 2,676 5,106 7,525 10,38 13,67 17,36 21,43	,4218 1,179 2,479 4,403 6,487 6,552 11,79 19,96 18,52	3417 9547 2,008 3,566 5,255 7,251 9,507 12,13 15,00	· · · · · ·
				#15		a a canacita naci							
						•			ě.				
							cion los lie				(*)	1.00	30 31
							ner a cas is in the	**************************************		*	0.000 A		
				1.00			· ** ···		*C			1.00 A.00 A.00 A.00	-
					1.00	····	1	a				· · · · ·	14)
				(1) (MAY) -			1	· . · · · · · · · · · · · · · · · · · ·		1. (1. e) (1.			
					2 - E		est, e		De:			14	

0)				$\mathbf{\nabla}$			\cup					
					±3.€					88	÷		
			0		ER(SD	DSION BÝ SLOPE Il nake muz2-h	-LENGIN AN	ND COVER F	ACIOR			i e Maria e e e e	11
					· .								
			1	R FACTUR = K FACTOR = P FACTOR =	125.000	PERCENT CAN SURFACE COV ERDSION UNI	ER TYPE	= 25 = G = TONS/AC	RE			•	
			50.0	55.0	60.0	PER CENT GOOD	620010 CC 70.0	OVER ,75,0	80.0	85.0	90,0	95.0	
				•		C	OVER FACTO	DR.					
P. 077	SLOPE		.0660	.0520	.0410	.0320	,0240	,0160	.0130	.0060	,0040	,0500,	1.00
SLOPE VER.CENT	LEAGTH	SLOPE-LENST FACTOR	£1			-						Seren in	
0000	155.4	F + 5					1545 44						
2.000	150.0 150.0 150.0 150.0	505u-01 2254 4675 8182	1801 5031 1.0#2 1.823	1.436	FC -3126 6070 1.132	.8731-01 .2440 .5052 .6837	.6548=01 .1830 .3789 .6623	4365-01 1220 2526 4418	.3547=01 .9911=01 .2053 .3590	1637+01 4574+01 9473=01 1657	1091=01 3049=01 6316=01 1105	3158-01	-
000.1	150.0	1,200	2,000	2.116	C 2.302	1,302	,9765 1,347	6510	5290 7299	.2441	.1620	,0138-01 ,1123	
						3 m. 7	\mathcal{T}_{in}						- C
				2			$(1, \dots, m) = (1, \dots, m)$	1 44		$\mathbf{e}_{i,m} = - \mathbf{e}_{i,m}$		*** (*** * *	
							21.1	114 ga		(+ + -) ()		ан на таку	
							1		9				
							1.00					forein an	
						1. A	jî e l	4	3			÷	
							i se a	- F.C			1		
		¥								÷ - •			
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-	2		2		(15)
				141			44	anasi a'	÷				
								din Al	1	•	·····		

		\cup		Υ.		
	ie ne a			<i>e</i>]	10 million	the state of the s
		ERUSICH B Soil Name	SLOPE-LENGTH	AND COVER FA NAEGELIN	CTDR .	· 1,
+	R FACTOR = K FACTOR = P FACTOR =	470 SURF	ENT CANOPY COV ACE COVER TYPE ION UNITS	ER = 0 = G = TUNS/ACR	E	
÷	50,0 55.0	60.0 PER CE	NT GOOD GROUND	75.0	80.0 85.0	90.0
			COVER FA	CTOR		1
SLOPE SLOPE ER.CENT LENGTH	0700 .0550 SLUPE+LENGTH FACIDR	.0450 .0	320 ,0240	.0180	.0130 .0100	,0070,0050
00000 175.0 000 175.0 000 175.0 000 175.0 000 175.0 000 175.0 000 175.0 000 175.0 000 175.0 0.00 175.0 0.00 175.0 0.00 175.0	84466*01 2953 2320 236 6250 6482 8976 1.735 1.363 7636 3.062 2.422 1.342 4.561 3.565 1.757 6.256 4.924 2.366 6.251 6.463 3.067 10.45 8.237 3.717 12.56 10.19	4950 .3 1.041 .7 1.849 1, 2.725 2, 3.760 2, 4.950 3, 6.291 4,	350 772 933 FC 5949 1.057 076 F 1.557 865 F 2.148 772 2.829 793 3.595 926 AC 4.444	,7592~01 ,2121 ,4462 ,7926 1.160 1.611 2.122 2.696 3,333	5463+01 4218+01 1532 1179 3223 2479 5724 4403 6434 6487 1,164 8952 1,532 1.179 1,947 1,498 2,407 1,652	2953-01 2109-01 8250-01 5893-01 1735 1239 3082 2202 4541 3244 6266 4476 8251 5893 1.049 7490 1.296 9259
		na aminana an			an de la segura de l Segura de la segura d	
	in Arrest and	·····				
	4 - C	2010		ana in	te com e o	······································
	(******		••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · ·	an sin ang an si si si	(16
		· · · · · · · · · · · · · · · · · · ·			al dan ann	·
				•	5 E L	1.0. (J. 1

This table accounts for 85.1% of the entire Bar X Allotments and the Heber-Reno Sheep Driveway. The remaining soil units are on steep slopes (50%+) and/or rock outcroppings.

The USLE Analysis indicates that soil units 21 and 22 are full capacity areas. However the denudation of these riparian zones warrants a classification of potential capacity in order to protect fisheries and/or wildlife habitat (cover).

Soil unit 157 is located in the ponderosa pine type, often in isolated and inaccessible pockets. The unit does not produce enough forage to warrant a livestock grazing operation with reasonable management goals under sustained yield management.

III. <u>Resource Description as Related to Grazing Use and Range Management</u> <u>Geology and Terrain</u>

The Bar X includes areas of rolling, gently undulating topography and areas of steep, rugged slopes and rock outcroppings. The lower elevation, gentle topography areas, provide most of the grazing capacity for livestock. Elevations range from 4,600 feet near the Ellinwood Ranch to 7,600 feet along the Mogollon Rim.

The lower woodland area soils are developed primarily from alluvium materials such as gravel, sand and silt. The soils in the southwestern portion of the allotment developed from granite and schist parent materials. Rock materials between the Mogollon Rim and Naegel Rim are predominately sandstone, limestone and shale.

Climate

The local climate on the Pleasant Valley Ranger District is characterized by mild summers and winters. The average annual precipitatio is 19.37 inches. The highest peak of effective growing season precipitation occurs during July through September. Spring moisture is important to a lesser degree during March through May. The month of June is normally dry and very warm. Weather records at the Pleasant Valley Ranger Station (see appendix) indicate that the precipitation average during the period July through September is 8.0 inches. Winter and spring moisture are very important in the physiological development of cool season grasses such as western wheatgrass (Agropyron smithii), muttongrass (Poa fendleriana), Kentucky bluegras (Poa pratensis), bottlebrush squirreltail (Sitanion hystrix), and plains lovegrass (Eragrostis intermedia). Important browse species such as mountain mahogany (Cercocarpus brevifloris) and ceanothus (Ceanothus spp.) rely on winter and spring moisture for leader growth The moisture received during the summer is utilized most efficiently by warm season grass species such as sideoats grama (<u>Bouteloua</u> <u>curtipendula</u>), blue grama (<u>B. gracilis</u>), hairy grama (<u>B. hirsuta</u>), cane beardgrass (<u>Andropogon barbinodis</u>) and <u>Aristida hamulosa</u>.

Soils

Soils in the pinyon-juniper and grassland types have been adversely affected by the severe overstocking and mismanagement that has existed on the range. The excessive utilization of grass by livestock has resulted in a loss of plant vigor and grass plant die-off. Effective ground cover is currently less than the amount required to protect the soil due to overuse by cattle. As a result, the upper horizons of the soil have been eroded away in many areas exposing the "B" soil horizon which is high in clay content. As the clayey "B" horizon of the soil is exposed, the soil begins a churning action because of the "shrink and swell" characteristics of the soils.

Sheet, gullying and rill erosion is extensive on the allotment. Gully erosion is active on many areas of the Bar X. The lack of vegetative cover allows a large percentage of precipitation to run-off, rather than percolate into the soil. The overland flow of water has resulted in gully and rill formation down stream.

Vegetation

The plant associations as delineated on the range analysis map indicate 6 distinct vegetation types on the allotment: 1-Grassland, 5-Chaparral 6-Conifer, 7-Riparian, 9-Pinyon-Juniper, and 13-Oak Woodland.

The vegetative resource on the Bar X is depleted drastically in terms of forage production, plant density, desirable species composition and diversity. Historic overstocking, as well as current overstocking, have induced plant community retrogression.

Juniper Savannah

The pyric dis-climax plant community in the juniper woodland area appears to be a grassland savannah characterized by large scattered alligator junipers. The climax grass plant community associated with the alligator juniper (Juniperus deppeana) is a mixture of both cool and warm season species similar to the composition of the Pine Creek Range Study Plots and the Cherry Creek Watershed near Young. Sideoats grama appears to be the dominant species associated with plains lovegra blue grama, hairy grama, spike muhly (Muhlenbergia wrightii), and scattered plants of muttongrass, western wheatgrass and bottlebrush squirreltail. Excessive livestock utilization has reversed the successional direction, resulting in a plant community dominated by blue and hairy grama. The decreaser species such as plains lovegrass and sideoats grama are commonly found in remnant stands within the canopy of cactus plants (<u>Opuntia spp.</u>) and absent in unprotected areas.

The removal of 70%+ of the forage production each year by grazing has precluded the accumulation of the litter layer which is conducive to the mesic microclimate required by cool season species.

The juniper grass savannah was presumably maintained by wildfire prior to the 1880's. Fire has been virtually eliminated in the juniper type because of the lack of adequate fine fuels (grass) to carry a fire. A dense grass cover, which can compete vigorously, also provides protection from the encroachment of younger age classes of alligator juniper.

Sheet erosion is a severe problem on many sites. Overall range and soil condition trend is down. In the present state of degradation, many sites will no longer respond favorably to the removal of grazing alone, but will require a physical treatment or removal of the closed juniper canopy.

Grassland

The grassland plant community is dominated generally by blue and hairy grama with occasional occurrences of sideoats grama. Invader species such as sunflower (<u>Helianthus</u> spp.), <u>Aster</u> spp., broom snakeweed (<u>Gutierrezia</u> <u>sarothrae</u>), and small alligator juniper are usually present in the community. Trend is down on all of the grassland sites. Erosion in the form of gullying and sheet erosion is a problem. Pedes taling of grass plants and plant die-off is common. The lack of adequate vegetative cover has resulted in initiating and expanding of vertisol areas (churning soils).

Ponderosa Pine

The ponderosa pine type has been depleted severely by livestock overuse. Desirable grass species such as pine dropseed (<u>Bleoharoneuron</u> <u>tricholopis</u>), Kentucky bluegrass. mountain muhly (<u>Muhlenbergia montane</u> bottlebrush squirreltail, and western wheatgrass have been greatly reduced. Although the primary cause of the grass community deterioration is grazing abuse, the effect of dense ponderosa pine (<u>Pinus ponderosa</u>) reproduction and protection from fire cannot be discounted in the process of range deterioration.

Ponderosa pine type - note the dense needle cast and sparse stand of dryland sedge (<u>Carex spp</u>.)

Chaparral

The chaparral type is typically dominated by turbinella oak (<u>Quercus</u> turbinella), emory oak (<u>Q</u>. emoryii) and mountain mahogany (<u>Cercocarpus</u> breviflorus). The understory, on sites not severely depleted by grazing is normally dominated by sideoats grama, <u>Aristida</u> spp. and blue grama. On slopes exceeding 50%, the soils appear to be of such a nature that a dense chaparral or brush cover is a necessity to prevent massive erosion. This type is a valuable resource for deer habitat and provides much of the winter diet for livestock. The chaparral zones on the Bar X are grazed excessively, resulting in trampling and trailing damage to the soil (soil displacement) and extreme hedging on the desirable browse.

Typical Chaparral on steep slopes below Naegelin Rim.

Oak Woodland

The oak woodland type shares many of the characteristics of the pinyol juniper type and the chaparral type. This plant community contains pinyon pine (Pinus edulis), alligator juniper, turbinella oak and is usually dominated by emory oak. Often the oak woodland type is found on cooler north facing slopes and deeper canyons. It is often associated with rocky, shallow soils. The understory should be composed many desirable grass species such as sideoats grama, Texas bluestem (Andropogon cirratus) and wolftail (Lvcurus phleoides). Mormally, the stony and steep characteristics of these sites generally provide protition from domestic livestock grazing. However, current overstocking forced cattle into these areas and drastically deteriorated the under story plant community leaving inadequate ground cover.

Riparian

The riparian type is found within the pine type and the woodland type On all sites where livestock have access, extreme utilization has resulted in extensive resource damage. Colcord Canyon, Naegelin Canyon Cherry creek, Haigler Creek and Pine Creek are all severely denuded b grazing. The riparian sites have the potential to be the most oroductive sites, if they have not been depleted beyond recovery. The soil resource inventory indicates that these sites have the potential to produce 1500-2000 pounds per acre. These areas are an extremely important element of wildlife habitat and fisheries. They are also important in terms of quality watershed. At present, perennial grasses are nearly non-existant. Woody species are hedged severely and reproduction of desirable species is absent.

<u>Wildlife</u>

Extreme overuse of grass and browse on the Bar X and Heber-Reno Sheep Driveway has severely damaged the wildlife resource. Reduced herbage production, extensive severe erosion, soil compaction, and stream siltation are the results of overgrazing in the area. This damage has resulted in degradation of the quality habitat needed to sustain healthy, diverse wildlife populations.

Of the three primary needs of all wildlife species (food, water and cover), food and cover have been the most severely damaged. The excessive utilization of herbaceous vegetation by domestic livestock has reduced the herbaceous productivity of the forage resource which, in turn, has reduced the capability of the land to support viable populations of wildlife species that one would expect to find.

Erosion and compaction affect the ability of an area to produce herbaceous vegetation in two ways:

- Without effective or adequate ground cover in the form of litter or vegetation, a drastic increase in water run-off is possible. Ground cover is necessary to catch, hold and slowly absorb rain drops to allow percolation through the soil and be available to plant roots.
- Water moving over the ground surface (run-off) transports soil particles. As soil loss exceeds soil formation, site capability to produce herbaceous vegetation decreases.

The following list of wildlife species that should exist on the allotment and driveway indicates the dependency on herbaceous vegetation (directly or indirectly):

Mammalian Species - direct dependence

Rodents (moles, mice, rats, ground squirrels, chipmunks, etc.) Black-tailed jack rabbit Elk Cottontail rabbit Javelina Whitetail deer - seasonally Mule deer - seasonally

Mammalian Species - indirect dependence

ShrewsBlackbearRaccoonRingtailed catGray FoxCoyoteMountain LionBobcatBatsSkunks

Avian Species - direct dependence

Morning dove Merriam's turkey Hummingbirds Steller's jay Scrubjay Raven and crow Horned lark

Avian Species - indirect dependence

Roadrunners Nighthawks Swallows Pinyon jay Clark's nutcracker

The fishery along Haigler Creek is damaged because of extreme livestock utilization of riparian vegetation and siltation resulting from upstream erosion. Desirable streamside vegetation that would provide shade, nutrients and habitat for insects is lacking. Desirable insects for trout such as May flies are quite scarce. Heavy silt deposition in the stream bed is detrimental to the spawning requirement of trout.

Denuded riparian zone near Haigler Creek.

Selective, excessive grazing by livestock has eliminated cool season grass species in the woodland zone. Desirable cool season and warm season species in a mixture would provide the plant community diversity needed.

Watershed

One of the primary purposes for originally establishing the Tonto National Forest was for watershed protection. Protection of the water and soil resources is even more critical today than it was when the Tonto was established. In order to meet the tremendous demand for renewable resources, maintaining the soil in a productive condition is of the utmost importance. The necessity of providing high quality water for downstream aquatic life and human use cannot be overstated. Watersheds on the Tonto provide a major source of water supply for 1.4 million people in the Phoenix, metropolitan area. This water is utilized for domestic, agricultural, industrial, recreational and wildlife purposes. Protection of the soil and water resources on the Tonto was recently made top priority on the Forest. National policy provides direction that management activities of other resources must, in turn, protect the basic soil, water and geology resources.

Current Bar X conditions are a result of the excessive abuse and mismanagement of the grazing resource. Goals and direction given have not been met in terms of either protecting or improving the soil and water resources. Erosion and water pollution are prevalent on the Bar X.

The pinyon-juniper and riparian vegetation communities are suffering the worst damage. Soil loss in the form of sheet and gully erosion in the pinyon-juniper community is severe due to a lack of adequate vegetation cover. These losses exceed the losses that could be expected as a result of natural geologic processes. This is evident from the examination of areas protected from grazing such as the Pine Creek Range Study Plots and the Cherry Creek Watershed which have healed considerably with the exclusion of domestic livestock during the last 20 years. The riparian areas within the Bar X are currently in a deteriorated state. Two types of damage is occurring on these areas. First, the soil does not have adequate vegetative ground cover, consequently erosion is occurring. Secondly, the sediment from deteriorated lands upstream is degrading and polluting the aquati environment.

Although the pinyon-juniper and riparian communities are by far the most productive sites, the overuse of these areas will continue to reduce the effective vegetative cover (grass plant density) and increase topsoil loss, which will result in a loss or reduction in site productive capability.

Vegetative cover within Pine Creek Study Plot

Poor vegetative cover on Sheep Driveway under overgrazing by Bar X cattle and sheep.

The following summaries demonstrate overall allotment range condition trend in 1966 and 1975. The data is a summarization of the permanent range trend clusters on each individual allotment.

Bar X Allotment

The permanent transects were reread in May of 1975. The 1966 data was converted to the 6/69 BMR-B score card and the original data, converted data and the 1975 data is displayed on the Summary of Range Trend Data form.

Cluster #1 was located north and west of the Haigler Creek private land and C1T1 and C1T3 were destroyed during or after the juniper push. C1T2 was found and reread. Cluster #5 is in the pine type and not reread due to location. The area has no perennial grass or forage browse. The following is from the transect data:

3/9/66	3/9/66 to 6/69	1975 Data
C1 <u>57</u> J fair	C1 <u>73</u> ↓good	C1 <u>42</u> ↓ fair
68→good	62→fair	<u>38</u> ↓ poor
9C Bohi, Bocu, Erwr	9C Bohi, Bocu. Erwr	Bohi, Bogr. Erwr
*	*data for C1T2 only	C1T1 and C1T3 desti
C2 <u>39</u> ↓ poor+	C2 45↓ fair	C2 <u>40</u> ↓ fair
40 ↓ poor+	41↓ lowest fair	<u>31</u> ↓ poor
9C Bohi, Bocu, ARIS	9C Bohi, Bocu, ARIS	
C3 354 poor	C3 40 poor	C3 <u>34↓</u> poor
394 poor+	41 lowest fair	19↓ very poor
9C Bohi, Bocu, Erwr	9C Bohi, Bocu, Erwr	
C4 <u>30</u> ↓ poor	C4 <u>38</u> ↓ poor	C4 <u>39</u> ↓ poor
39↓ poor+	39↓ poor	<u>34</u> ↓ poor
9C Bohi, Bocu	9C Bohi, Bocu	
cc acl near		

C5 <u>36</u>↓ poor 66→good

6A Bocu, Muem, Quem

The transect data reflects the downward trend. The effect of the jun push is not reflected in improved range condition. C1, C2 and C4 are all in or near areas where juniper control has been accomplished.

The following is from the 1975 data:

C1 Not used due to T1 and T3 not being located. The area indicates very poor vigor, dead plants, thinning of vegetative sod, soil movement, loss of weeping lovegrass due to extreme use, and an abundance of annuals.

			1966	1975
C2	Hits on Hits on	forage plants all plants litter bare soil	61 67 86 133	51 55 53 177
C3	Hits on Hits on	forage plants all plants litter bare soil	47 47 32 131	12 12 25 197
C4	Hits on Hits on	forage plants all plants litter bare soil	37 37 64 149	37 37 38 196

- C5 Not reread due to location and lack of forage species.
- CIT2 Annuals heavy. Soil movement. Dead plants. Utilization extreme. One to two inch leaves. No seed stalks on Bohi.
- C2T1 Utilization extreme.
- C2T2 Litter is cow droppings and roots of dead plants not an accumulation of past production. Very low production.
- C2T3 Juniper resprout at 50' stake 20 ft east between 11-28 inches tall. Eight plants measured.
- C3T1 Sheet erosion turning to rill and gully erosion. Dead Bohi plants.
- C3T2 Utilization extreme. Vigor very poor. Plants pedestalled as much as two inches. Well developed erosion pavement.
- C3T3 Rill erosion crossing tape at 58 to 80 and 87 to 100. Soil loss. Vigor very poor. Utilization extreme. Some dead plants. Very few plants remaining.
- C4T1 Leaf height 1 to 2.5 inches. Bohi no seed stalks. False alfalfa very abundant. Appears to be heavy invader.

- C4T2 Utilization extreme all spring growth used. Every plant grazed. Some dead plants (no green up), others very poor vigor. Juniper push reseeding. Very poor vigor due to total utilization.
- C4T3 Juniper resprout 6 to 12 inches high at 95 on tape.

Haigler Creek Allotment

The permanent transects were reread in May 1975 in conjunction with the production and utilization studies.

The Summary of Range Trend Data form was used to display the data. The 1964 data is shown in its original form and converted to the 6/69 BMR-B score card for easy comparison with the 1975 data.

1964 Data Using the	1964 Data Converted to	1975 Data Using 6/
1964 Standards	the 6/69 BMR-B Score Card	BMR-B Score Card
3/10/64		5/9/75
C1 <u>26</u> ↓ fair	C1 <u>58</u> ↓ fair	C1 <u>37</u> ↓ poor
21↓ fair-	<u>32</u> ↓ poor	23↓ poor
1-Bocu, Bohi, Bogr	1-Bocu, Bohi, Bogr	Bohi, Bogr, Bocu
C2 <u>25</u> ↓ fair	C2 <u>36</u> ↓ poor	C2 <u>34</u> ↓ poor
18↓ poor+	29↓ poor	14↓ very poor
9C-Bogr, Bocu, JUNI	9C-Bogr, Bocu, JUNI	Bogr, Bocu, Erwr,
C3 <u>21</u> ↓fair-	C3 <u>33</u> ↓ poor	C3 <u>33</u> ↓poor
20↓ fair-	<u>30</u> ↓ poor	17↓very poor
9C-Bogr, JUNI, Erwr	9C-Bogr, JUNI, Erwr	JUNI, Bohi, Bogr

The transect data indicated the range to be deteriorating. The loss of perennial grass is not complete, however, the extremely poor vigor and loss of soil has adversely affected production. The recovery of the plant community should be possible in that sufficient plants remain for a seed source. Some areas show the die-off of plants has started. The extreme utilization on grass has forced the cattle to browse on oak and manzanita.

The following items indicate the primary changes from 1964 to 1975:

			1964	1975	(29)
C1		forage plants	38	22	
		all plants	38	23	
	Hits on		71	32	
	HITS ON	bare soil	165	210	
C2		forage plants	35	17	÷
	Hits on	all plants	58	49	
	Hits on	litter	69	36	
	Hits on	bare soil	143	166	

Young Allotment

The permanent transects were reread in May, 1975 in conjunction with the Production and Utilization Studies. The Summary of Range Trend Data form is used to display the 1966 data in its original form and the 1966 data converted to the 6/69 BNR-B score card and the 1975 data using the same score card.

1966 Data Using	1966 Data Converted to	1975 Data Using 6/69
1966 Standards	the 6/69 BMR-B Score Card	BMR-B Score Card
C1 42↓fair	C1 $49 \downarrow$ fair	C1 <u>44</u> ∳fair
33↓poor	$41 \downarrow$ lowest fair	25↓poor
9C-Bohi, Bocu, Erwr	9C-Bohi, Bocu, Erwr	Bohi, Erwr, JUNI
C2 <u>46</u> ↓fair	C2 $52 \downarrow$ fair	C2 <u>26</u> ↓ poor
39↓poor+	$42 \downarrow$ poor+	27↓ poor
9C-Bohi, Bocu, Erwr	9C-Bohi, Bocu, Erwr	Bohi, Erwr, Bocu, Jl

The rereading of the transects indicates the range is deteriorating rapidly. The following is from the 1975 data:

			1966	1975
C1	Hits on	forage plants	69	56
		all plants	69	56
	Hits on	litter	90	33
	Hits on	bare soil	102	188
C2	Hits on	forage plants	95	59
		all plants	96	60
	Hits on	litter	36	36
	Hits on	bare soil	123	165

CIT1 Annuals heavy - scattered perennial grass. Very low vigor.

CIT2 Poor vigor - sod clumps mostly dead plants - sheet erosion.

- C1T3 Annuals false alfalfa no seed stalks vigor poor.
 - C2 Downward trend. Soil movement. Dead plants starting to show. Large number of partly dead plants. Vigor very low.

Colcord Canyon Allotment

The permanent transects were reread June 25 and 26, 1975 in conjunction with the Production and Utilization Studies.

A Summary of Range Trend Data form is used to display the original 1964 data, the 1964 data converted to the present score card standard, and the 1975 transect data. The following is the rating for the 1964 data and the 1964 data converted to the 6/69 BMR-B score card and the 1975 data using the same score card:

1964 Data Using the	1964 Data Converted to the	1975 Data Using 6
1964 Standards	6/69 BMR-B Score Card	BMR-B Score Card
C1 <u>12</u> ↓poor 23- √ fair	C1 <u>45</u> ↓ fair 23⇒poor	C1 $12 \downarrow$ very poor $17 \downarrow$ very poor
C2 <u>16</u> ↓poor	C2 <u>47</u> ↓ fair	C2 11 Very poor
20-≯fair	18-→very poor	11 Very poor
6A Bogr, Bocu, ASTR	6A Bogr, Bocu, ASTR	

The results of the rereading of the transects indicated the range to be deteriorating at an accelerating rate. Specifically the following items indicate the nature and magnitude of the deterioration:

1964	1975
6 19 134 127	2 23 92* 171
5 22 75 170	0 11 66* 201
	6 19 134 127 5 22 75

*See Litter from C1.

C1T2 The majority of the Bohi plants are dead. Of 33 Bohi recorded in 1964, 3 are alive. Of 10 Bocu recorded in 1964, 2 are aliv

- C1T3 The area is no longer range due to lack of forage, soil loss and erosion. 90% of plants recorded in 1964 are dead. Plants have pedestalled 1 to 3 inches then died. The soil held by the roots and pedestalling has washed away leaving dead plant roots on top of the ground.
- C2T1 Roots are exposed, Bohi plants are dead or very weak in vigor. No seed stalks or grass litter is evident in entire area. All forage production has been taken.
- C2T2 Dead plants and exposed roots evident. Soil is being washed away with a desert pavement forming.
- C2T3 Litter is from trees. Dead plants evident. Total utilization of all production that cattle can reach.

IV. History of Use

The Bar X Ranch is comprised of four grazing allotments, Bar X, Haigler Creek, Young and Colcord Canyon. The allotments were combined into one unit and are managed as one operation.

The current term permit, dated May 5, 1976, is for a total of 468 adult cattle and all of the natural increase yearlings for 10 months.

Prior to 1977, the permittee had 10 horses on the allotment yearlong under Free Use Permit.

The Bar X Allotment has been stocked above the estimated capacity as far back as the District records go. The 1940-41-42 inspections indicate the stocking too high. Non-use for 60 head was taken in 1940. 1941 additional non-use was taken. In 1946 Ranger Turner notes: Juniper invasion with range in fair condition except for pine type and Dry Creek area north of ranch house. Inspection in 1949 by Nelsor and Casanova listed watershed conditions poor, trend down and vigor of forage species poor. Casanova and Brown recommended a 50% reduction in December 1950. The allotment was transferred to the Bar X Cattle Co. in 1959. The preference remained 188 C.Y.L. plus N.I.

The following are notes from past inspections:

- 1940 Inspections by Kirby, Stewart, indicated the allotment over-
- 1941 stocked. Non-use was recommended and 60 head taken in 1940.
- 1942 Inspection reports with reference to the pine type states. "(the pine type)....is fast going out of the picture so far as grazing of domestic livestock is concerned."
- 1949 Inspection by Nelson and Casanova listed conditions of watershed as poor and trend down. Condition and vigor of forage species is poor. Allotment is over stocked. Stock numbers needed reduction by 50%.

1953 Inspection emphasized need for distribution. Area around 1954 headquarters over used.

- 1955 Inspection by Pfefferle Utilization of key species satisfactory in winter unit but over used on rest of allotment. Forage in pine type-browse; grass very poor vigor and on the downgrade. Erosion is serious. Area north of Chamberlain Trail overgrazed.
- 1960 Inspection by Reynolds forage production below average.
- 1966 Allotment Analysis In the past 5 years 8 to 10 inches of soil has washed down against the Clay Springs Wildlife Plot fence.

The Colcord Canyon Allotment was added to the Bar X, Haigler Creek. and Young Allotments in 1969. The estimated capacity was for 35 cattl for 4 months, however the full preference of 35 C.Y.L. was transferred bringing the term permit to its present numbers.

The Colcord Canyon Allotment has been used as yearlong range for many years. It has been recognized that the area was not carrying the preference yearlong. Private land carried some use until this land was subdivided. Attempts to convert to seasonal use were tried from time to time. The Forest Supervisor's letter of December 16, 1947 stated: "Indications at present are that an appreciable reduction will have to be made, and undoubtedly the permit would be changed from a yearlong to a seasonal basis." The Forest Supervisor's memo dated March 29, 1948 indicated a 50% reduction, and as this was still undoubtedly far above the grazing capacity, a close check would be required on the allotment. A further reduction might have to be made.

T.L. Meredith obtained the term permit for 20 C.Y.L. plus N.I. to June 1 in 1948. Because of a misunderstanding between Meredith and the Forest Service, a permit for 25 head was issued on a trial basis in 1949.

The permit was converted in 1955 from 25 C.Y.L. plus N.I. to 6/1 to a permit for 35 cattle yearlong. A transfer to L. Cline, G. Cline and E. Stephens in 1953 was for 35 C.Y.L.

The past range condition obtained from the range inspection records is listed as follows:

- 1946 Total non-use for two years. Slight improvement.
- 1949 Condition of forage poor, trend down. Preference reduced by 12 head in 1948.

1953 Utilization of forage is complete.

- 1954 Utilization light on east side of Colcord Canyon. Heavy on west side.
- 1955 Soil in and around Sheep Pen Flat in the process of fairly severe erosion.
- 1965 Estimated capacity 140 AUM.

The history of use on the Haigler Creek Allotment dates back to 1915 with a preference for 25 cattle & 6 hogs. The permit was gradually increased over the years until in 1929 Gillette held a permit for 100 C.Y.L. This number was in effect until 1934, when the permit was reduced by 19 head. In 1962 the permit was transferred to the Bar X Ranch with a preference of 82 C.Y.L. plus N.I. to 10/31.

Inspection reports dating back to 1940 all state the allotment is either completely utilized or over utilized with downward trends. Stewart in 1942 recommended a 50% reduction in use. Casanova in 1949 recommended a reduction of 75%. Pfefferle confirmed the need in 1954.

Range condition from past range inspection records is listed as follows:

- 1966 Allotment Analysis. Inspection reports dating back to 1940. All state that each year the allotment is being eithe completely utilized or over-utilized. Heavy utilization occurs especially in the area known as the "Pocket".
- 1942 Report by Stewart recommended 50% non-use for several years.
- 1949 Report by Casanova recommended a reduction of 75%.
- 1954 Report by Pfefferle, "It is doubtful whether the allotment should carry the full preference".

The Young Allotment was transferred to the Bar X Ranch in 1961. The Haigler Creek Allotment was added to the operation in 1962. The addition of the Colcord Canyon Allotment in 1969 brings the present operation up to date.

The earliest record of the Young Allotment lists a preference of 203 cattle. Inspections by Ranger Stewart in 1940-41-42 all state severe over grazing. Stewart recommended a 50% reduction. An inspection by Turney states in 1945 and 46 there was a heavy loss of sod on the summer units around Young. The permittees were found to be 960 AUM

in trespass during 1946. Casanova recommended a reduction of 75% due to poor range condition and severe erosion occurring on the allotment. The allotment was reduced in size in 1953 when the Young Sisters and F.L. Waldrip divided the partnership. The allotment remains the same after this date with a permit for 163 C.Y.L. plus N.I. to 10/31. Inspections in 1953, 1954, and 1955 all show distribution poor with the private land and south end of the allotment and the Sheep Driveway carrying the cattle. This use was recognized as severe with damage to the range. Distribution is listed as poor in 1956, 1957, and 1959. The Young Allotment was transferred to the Bar Ranch in 1961 with full preference.

The following are notes from past inspections:

- 1940 Inspections by Stewart states southwestern portion severely 1941
- 1942 overgrazed. Stewart recommended 50% reduction.
- 1946 Inspection by Turney in 1945 and 46. There was a heavy los: of sod on summer units. Vigor was low. Trespass of 960 AU
- 1950 Casanova recommended 75% reduction severe erosion.
- 1953
- 1954 Pfefferle states distribution poor.
- 1955
- 1956 Pfefferle distribution poor.
- 1957 R. Reynolds distribution very poor.
- 1959 R. Reynolds distribution fair.
- 1962 McSloy showed southwest half heavily utilized. Little new growth. Seed production little or nil. Sunflower and indian alfalfa in abundance.

The allotments have been under study for many years both as separate units and as a combined unit. In 1967 the Forest Service and permitte agreed that a reduction in numbers was needed, and that a management plan was required.

It was decided the term permit would be for 433 C.Y.L. plus 150 yearlings to 3/31, plus 40 yearlings to 10/31. All private land would be placed under a private land permit to carry 110 yearlings from 4/1 to 10/31. The non-use was to be voluntary for 8 years rather than a reduction in the term permit.

The non-use agreement was evidently dropped when the permit was transferred to the current permittee, Glenn Hamilton in 1973. V. Actual Use Records

	Actual Use (Paid &	Free Use) AUM	Comments	
1958	7850	i i	120 AUM Free	l liśe
. 1959	7045		n	u
1960	7861		u	н
1961	7961		11	н
1962	7982		11	л
1963	8204		н.,	п
1964	8104		и	
1965	8248		н	н
1966	7098		n	н
1967	7242		u	11
1968	6754		u	n
1969	6440			
1970	6275		u	п
1971	6081			11
1972	6422		н	ŧ
1973	6485		н	п
1974	4648	"and	14 AUM's Unau	utho
1975	4769	"and	389 AUM's Unau	utho
1976	6365		120 AUM's Fre	ee U
1977	6485		11	u

Unauthorized use apparently occurred in 1974 as well as 1975, with action being taken. Livestock shipping records indicate that unauthorized use occurred prior to 1975 without detection.

VI. Management Goals and Objectives

The Tonto National Forest range resource goals, which reflect the recommended R.P.A. Goals, emphasize a program which will 1) bring the range resource under proper stocking, 2) correct unsatisfactory watershed conditions, and 3) provide forage without impairing land productivity to the extent benefits are commensurate with costs.

Long term goals for the 4 allotments comprising the Bar X are as follows:

- 1. Reverse the downward trend in range condition.
- Meet the physiological growth requirements of desirable range forage species to improve range condition.
- Improve and enhance wildlife habitat.
- 4. Improve aquatic habitat along perennial streams.
- Improve deteriorated watershed condition through increased litter accumulation, grass plant density and reduction in soil compaction by livestock trampling and raindrop impact.
- Improve soil condition by controlling soil erosion and arrest the expansion of vertisol activity through an increase in litter and vegetative cover.

Management objectives:

- 1. Increase desirable forage production from the current average of 200 pounds per acre to 600 pounds per acre (300%).
- Increase desirable forage plant density and effective vegetation ground cover in critical areas within the juniper and grassland type from the current 20% (veg. + litter) to 40% (veg. + litter).
- Regenerate desirable riparian vegetation, both woody and herbaceous species, along major streams and drainages.
- Arrest the expansion of vertic soils and allow possible reclamation of existing vertic areas (Soil Unit 68).
- Improve desirable browse vigor and allow browse seedlings to establish.
- Provide herbaceous cover and food for indigenous wildlife.
- Improve plant community composition by allowing desirable cool season and warm season grass species to become established.

VII. Management Alternatives

The management alternatives will, as a minimum, provide for the utilization of the productive potential of the land. Each will be evaluated by determining whether the alternative will meet the management objectives and goals.

<u>Close the Bar X, Haigler Creek, Young and Colcord Allotments</u> to Grazing.

This alternative will reverse the downward trend in range condition, allow for an increase in effective vegetative cover, provide improved wildlife habitat and watershed conditions in the most timely and efficient manner.

The soil survey data indicates that under current management and stocking, effective ground cover has been reduced sufficiently to allow soil loss in excess of 5 tons per acre. This erosive condition is quite extensive and is found on virtually all soils with few exceptions.

At present, the Bar X Allotments contain a total of 742 acres of <u>Full Capacity</u> range. Three catagories of grazing capability are outlined in the <u>Allotment Analysis Handbook R3-1978</u>.

These acres are located primarily in Soil Unit 68 which contains 30% Udorthentic Chromusterts (Vertic Soils) and are essentially barren. This fragile soil condition warrants an allowable use percentage of 20% in order to provide potential for improved plant vigor and litter accumulation. The estimated capacity for the Bar X, incorporating soils data and the Production-Utilization data from the 1973-75 study, is 30 AUM's. Grazing 30 AUM's on the Bar X is neither physically nor economically feasible. The Full Capacity areas are widely scattered over the Bar X which has a gross area of 30,208 acres. Implementing the indicated stocking rate of 30 AUM's will, in effect, close the Bar X to grazing.

After an extended period of closure to grazing, when adequate ground cover is present to hold soil loss to an acceptable level, the areas currently classified as <u>Potential Capacity</u> (PC) range could be reclassified as <u>Full Capacity</u> (FC) range. This would allow the range to be opened to livestock grazing at a predetermined rate.

Graze the Bar X with numbers and season of use specified by the Production-Utilization Studies.

This alternative entails allocating capacity on those areas determined to be <u>Potential Capacity</u> and <u>No Capacity</u> areas. Select of this alternative involves the risk of failing to reduce soil lc to an acceptable level (2 tons per acre on most soils).

This alternative requires development and on-the-ground implementation of an intensive grazing management system which goes beyond meeting the physiological growth requirements of the existing grass plants. Actual forage utilization must be low enough to provide opportunities for grass seedling establishment, litter accumulation and an overall increase in desirable forage plant density.

This alternative will contain some non-structural range improvement work such as broadcast burning of 2278 acres to maintain grassland-savannah and juniper control on 574 acres.

Summary of Cost/Benefit Analysis of the Alternatives

The actual C/B Analysis Sheet for alternatives 2 and 5 are located the appendix.

	<u>Alternative 1</u>	Alternative 2
Capital Investments	None	54,800*
<pre>\$ Benefits</pre>	N/A	14,100**
Net Present Worth	N/A	-40,700
Benefit/Cost Ratio	0/0	.26/1.00
Cost Effective	Yes	No

*2278 acres burned - 3.00 per acre
**sustain 120 AUM's from year 6-20. AUM value \$5.00 @ 10% discount interest rate.

Proposed Management System

The proposed management system to be implemented on the Bar X is a variation of the Santa Rita Three Pasture System. The system provides for spring-summer rest two years out of three. Research at the Santa Rita Experimental Range near Tucson indicates that this system will provide the fastest range condition improvement and provide opportunities to provide rest for pastures during nonstructural range improvements. Since the Bar X, Haigler Creek, Colcord and Young Allotments have more than an adequate number of fences and pastures, several units have beer combined to provide three major grazing units of similar grazing capacity. These units are combined as follows:

Unit #1 - Bar X, Oxbow, West Hole and +Y Unit #2 - Grasshopper, Windmill Unit #3 - Dry Creek, Round Mountain, Steer

In the process of combining pastures and forming major grazing units, several livestock management benefits are provided. Each major grazing unit is composed of at least two pastures which will allow management alternatives such as bull pastures, weaning pastures, etc.

The proposed system of management would follow the following grazing schedule:

Year (1) Year (2) Year (3) Year (4)

<u>Unit</u>	Spring <u>Summer</u>		Spring <u>Summer</u>		Spring Summer		Spring Summer	Winter
#1	Graze	Rest	Rest	Graze	Rest	Rest	Graze	Rest
#2	Rest	Graze	Rest	Rest	Graze	Rest	Rest	Graze
#3	Rest	Rest	Graze	Rest	Rest	Graze	Rest	Rest

The proposed system of management will not produce the positive benefits needed unless stocking is drastically reduced. If an adjustment in numbers is prolonged over time, another system may be needed in the interim period.

The proposed grazing system will accomodate several types of livestock management alternatives such as a cow-calf operation, a yearling operation (seasonally) or a cow-calf-yearling operation with only minor adjustments in livestock movement dates.

Non-structural range improvement on the Bar X is drastically limited by soil sensitivity and erosion hazard. Any proposed treatment of the range cannot cause significant soil disturbance. Pushing or bulldozing juniper, chaining, cabling, or soil sacrification for seedir are all major disturbances which cannot be tolerated. Vegetation manipulation will have to be limited to the following items: broadcast burning in the juniper and oak type upon accumulation of enough fuel to carry fire, broadcast burning in the grassland areas to maintain the grassland type, herbicidal treatment (by hand) of alligator juniper, and broadcast seeding.

Pasture division fences are adequate along the present alignment and will need some heavy maintenance. The maintenance requirement needs fc each existing range improvement is delineated on the 2200-5's, Range Improvement Condition.

FIFAGA IT VILLEY HE (·›) ±L1	LUTHINT NO.	t , 1	ALIVITINT VAL Bar X
1: A 11 E	<u>ι κι</u> πρ	L THE HU.I	0"115	1 <u>ASJICKEERT</u>
+ GPANITE TANX	1 DAY/PLSVIR	1 000621 1	17	1 oK-
PUTH TACK	1 DAM/FLSVOR	1 000855 1	1 1	¦oK
STEVE TANK	I PAMZELSYOR	1 000823 1	1 10	lok
WARGELIN DEIFT FEN	FENCE, AT	1 000027 1	2.3	Needs trees removed from fonce
K"C11.TURL 11	I TRICK TANK	0006331		Needs pipe recorrected Ewlescope rompinte
HUTTES CORRAL	I CONTRAL	1 000038 1		IOK
ROUND PI CORPAL	C.JREAL	1 000539		1 1K
SHEEP TRAIL TEP FC	I FE'CT, AI	000646	1.2	Rutine Mc. necita
BEEX PARSE CP FET	FERCE, ANF	1 300400	۱ ۱ ۲ ۶	Koutine MAC
BAR X HATGLER FER	I FLUCF, APF	004030	6.0	Routine Mtc
PIN STOCK TANK	1 0%	1 004038 1	1 8	OK
GRASS SUPPER TARK	1 DAWARE SYDR	1 00/039 1	1 10	Spillway needs repair w/gabions & rip rap
Eat cripp with Steller	1 SPOING, DEV	004040		I not developed
DRY CHELK SPPING	1 Sparat of A	004041 1		1 not functioning
DRY CRELK TROUGH	I SPPING, DEV	004002		1 JL 11
RVb X BIUCK IVAR	L. OVANALE SAUD	1 004043 1	 A	10K-some spillway work needed 1 To stopentting

FLLASA T VALLEY RG	(5) AL(ansin au.	61	ALL STATISTICS Bar X
1. A 11 E	1 8189	1 INF. 10.1	U'+113	1 45516NHEN1 +
JEDY STUCK TARK	I DAMZRESVOR	1 004645 1	R	I some spill way with needed
NAEGELINCANCORPAL	I CONRAL	1 06464F 1		Inot functioning
SLASH-ALPETEL4	FENCE, AT	1 004047 1	1.5	Inceds heavy repair
RAPCOPASTUREFLN	FENCE, AT	1 00/028 1	1.1	lok - reutine mte
DRIFT FRICE 1	I FENCE, AI	1 004049 1	5.1	lok 11
DEDIT FENCE 2	FFFICE, AT	1 004050 1	1.1	OK ,1 "
DEJET FLUCF 3	I FENCE, AI	1 004051 1	.4	ok n "
BARX FORFSTHOY FED	FERCE, NEG	1 00/052 1	1.5	OK " "
BARA PLOTE REPORTS	1 FENCE, 4"F	1 004053	5.0	
NALGELINCARYDULANK	1 DANASE SALS	1 204522 1	ĥ	1 ?
*"C11/10/06 14/18	I DAMARESADS	1 00/11-05 1	8	ok.
-CLASSCOCK TANG	I PARZEESVOR	1 004800	ñ	Needs Spillway Repair
WALDSUP TALK	DANZESVOR	004407	8	1 11 " "
LOST GALT SPOING	1 3PRING, DEV	009523		Alecter to be alected
* Located on Hebe	- Reno sheep Drive	Way- Barki	Permitter	t is not required to repair of by Bark cattle

PLEASANT VALLEY 4E (I KIND	1 1HP.NO.1		************
	1	1 1		1
PEPLAKE YOUNG FEN	I FLACE, AND	1 404072 1	3.0	1 Accels wire stretched & some corner pists with min
GENTRYFTS YOUNGEES	I FENCE, ANF	1 PO4087 1	3.0	1 y n (x x x y y y y y
FOIATOS YOUNG FED	I FENCE, ANE	1 204431 1	. 5	OK - routine maintenance
YOUNG PV FEN	I FENCE, ARE	1 000100 1	6.5	1 11 11
HAPTIN TINK	T DAM/PESVOR	1 004433	Ŗ	DK- some spillway work needed
PEXICAN TANK	1 DAY/PLSVDR	1 004436	10	OK - maintained in 1977 (cleared
BUTTES WELL	AFCLI ALNON	1 004435 1	50	0 K.
DEIFT FLACE 1	I FERLE, AT	1 004436 1	1.2	OK - routine maintenance
YOULG HOY FEE 1	FERCE, ASP	1 004437	1.0	016 - "
ADPUD NOA LEN 5	FERCE, APF	003438	4,5	ok- " "
YOUNG HELER FEN 1	I FENCE, ATE	654439	3.5	
YOUNG HIRER FE'S ?	FLUCE, APP	204440	2.5	DX- " "
				i i
				1
,	1			1

PLEASANT VALLEY RD (5) AL	LOTHENT NO.	67		ALLUT	IENT NA			****
NANE	I KIHD	I IHP.NU.	UNITS	1		ASS	1 6 14	ME	R T
LOST SALT TANK	DAMIRESVER	004011	8	This	ingrove	ment is lo	cutod in	the P	ine ty
DIVISION FENCE 1	I FENCE, AT	1 004012	1,2	Necd	- son 1	ince has isestack	mining	ement. Nires	e e la c
DIVISION FENCE 2	FENCE, A1	1 004013	1.8	I "		Llearane 11	<u>د</u> ، ،	•1	.,
COLCORD BAR X FEN	I FENCE, ABF	1 004014	5.0	1	•1	<i>'</i> ,	1,	••	41
COLCORD HAIGLERFEN	I FENCE, ANE	004015	4.0	; ,,		······································		 h	· '4
COLCORD I BRANCHFEN	FENCE, ABF	1 004021	1.5		/1	11	1,	• 1	
				;					
	·······			¦					
· · · · · · · · · · · · · · · · · · ·									
		jj		i					
				; ;					• • • • • • •
				<u>;</u>			9		
27 - 1975 - 13				1					
- 19									

N A ILE.	KIND	1 ISP, 80.1	05113	I ASSIGNHENT
	1 - 7		····	1
BAR X HAIGLER FEY	I FENCE, ANF	P04030	6.0	Heeds wire stretched, stays \$ some posts
HATGLER 13PANCHFEN	I FENCE, ANF	1 220000 1	7.0	
HAIGLER FLLINHDFEN	FENCE, APP	1 004023 1	0,5	I some new wire necked, stays triple
HAIGLER MARSH FEN	FENCE, ABF	004029	1.0	DK - routine mtc. needs
DX UDA STOCK TANK	1 DAT/PESVOR	1 004031	8	1 DK - Located in NC area - not needel
JAKE STOCK TANK	I DANZELSVOR	1 004032 1	5	ok-
OXBUMITHSTOCKTANK	1 DAMZRESVOR	004033	8	ok-located in Neuren-
FILLMONLSTOCKTARK	I DA'IVRESVUR	1 004034 1	ß	1 1 ok-
CROSSYSTOCKTANK	DAMANCSAUS	604035	0	1 oK
DRIFT FENCE 1	I FENCE, AI	1 :04036	1.0	OK- Routine maintunance nordel
DRIFT FEFCE 2	I FENCE, AT	1 004037 1	1.2	lak-""
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				! !
				1
	1	1 1		1

	s da	• • • • • • • • •		5
PLEASANT VALLEY POTIS	x(10)	RENTED.	100	ALTUING HEAT HEAD Check
NANE	K140	145.40.1	UHITS	ASSIGNBERT.
PAPSHER HENER FEH	TENCE, AND	100007	2.5	DX - routice mtc.
D & HEILZ FEN	TERCE, ANE	FONCIE	5.0	OK - contine mtc.
BAPE HEBER RESULTS	TETLL, NEF	804053	5.0	OK - routinente
			·····	·····
······································				•
· · · ·				l
	·····			
YOUNG HEALTER FILL I	HUCH, AND	R04438 1	3.5	OK- rourinemte.
ADDRE HULFCH FF 3	11.1. V.+	1 679 1 41 1	2.5	OK - routine inte .
PINC CREEK WILL	vere vrage	104485 1	30	OK-maintained in 1977 but needs trough e Litch for Fond runsif weter.
PILECRETORAGETERS	310058GF WA	07456		ok-
WALLINT CH HELL	PELL: 11:04	000447-1	58	OK-needs wire stretched around waterl
«AUDOLICESTOCAGET.C	STORTER, NA	664635 1		оқ-
DRIFT FLUCE 1	IF YCF, AT	1-694439-1	1.5	OK-nerils routine mile.
HENDR HUY FER	TENCI , MIT	004400	1.0	0K - 11 11 11
REGER FORESTROATES	FERCE, NER	1022631	5:0	ok ~ " "