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Abstract 

This study proposes a morphological score generated from machine learning to classify and grade 

cancer cells’ phenotype on the epithelial-mesenchymal spectrum. To address this, cell phase maps 

from digital holography microscopy of two non-cancer epithelial and mesenchymal cell lines were 

trained and classified using several machine learning algorithms, with 96-100 % accuracy. After 

training, the models were transferred to classify two breast cancer cell lines, MCF-7 and MDA-

MB-231, in which epithelial-mesenchymal characteristics are relevant to function. The proposed 

score is a robust approach for detecting unknown cancer cells based on epithelial-mesenchymal 

features and should be suitably applied to single-cell studies. 

Introduction 

Quantitative phase imaging (QPI) is a label-free optical imaging technique that measures the phase 

delay introduced when a coherent laser beam travels through a thin transparent specimen, such as 

cells 1. The optical pathlength from QPI yields information about cell morphology, geometric 

thickness, refractive index which is relevant to protein concentration, subcellular organelles 

distribution and cell function 2, 3. Hence, a collection of quantitative parameters from optical phase 

maps constitute a cell type’s phase signature, providing additional information beyond the cell 

shape. Telecentric digital holographic microscopy (DHM) is a free-labelling and non-invasive QPI 

techniques acquiring low power density at the specimen, high temporal resolution, and rich 

quantitative pixel information that is well-suited to image biological specimens. Other key features 

of DHM include the ability to significantly reduce additional optical phase aberrations which are 

often introduced by an imaging objective 2. Recent applications of DHM to the assessment of 

living biological specimens include characterization of the global morphology of confluent cell 

layers 4, analysis of cell proliferation and morphology on various substrates 1,5,6, cell responses to 

drugs 7, 8, determination of phase features relating to cell motility 9,10, and cell classification in 

flow cytometry 11, 12. 

Quantitative phase imaging has great potential to evaluate cells in thin sections and in cell-based 

screening assays. In addition, machine learning applications to QPI include rapid evaluation and 

classification of cell types and (patho)physiological states 9,11–17, and improvements in 

reconstructed image quality 18,19, reviewed in 19. For example, machine learning classification from 

QPI compared favorably to manual scoring of the Gleason grade of prostate cancer from histology 

sections 20, or to conventional screening in terms of predicting pathological features of 

hematological diseases 21. While single method like support vector machines (SVM) have been 

particularly successful in classification of cell lines using such quantitative phase parameters 



9,12,22,23 , not many studies have reported about the use of ensemble method. In fact, ensemble 

methods can train multiple weak learners and combine them to obtain better predictive 

performance for classification. A recent study suggested that ensemble methods could improve 

detection of clear cell renal cell carcinoma in kidney disease leading to improved diagnosis and 

treatment 24. Other studies also reported that QPI and machine learning could help pathologists 

and scientists to accurately detect circulating tumor cells 25, classify cancer cells 26,27, evaluate 

metastatic potential of cancer cells 28, and assess cancer drug resistance 29. With the potentials to 

save time, labor, and reduce human error in phenotypic profiling, machine learning-assisted QPI 

has great power to aid in interpreting large-scale and high-dimensionality data from cells, 

potentially enhancing cancer diagnosis and treatment.  

A key aspect of cancer relevant to disease outcomes is cancer cell morphology.  Many cancers 

adopt either epithelial or mesenchymal morphologies, dependent on certain gene mutations, gene 

expression profiles influenced by the microenvironment, and epigenetic changes 30.  Indeed, the 

route to transformation for many pre-cancers involves epithelial-to-mesenchymal transition, in 

which cells switch from a quiescent phenotype with rounded morphology to an actively motile, 

invasive phenotype with elongated morphology 31,32. Complicating this picture, some cancer cell 

lines, such as MCF-7 cells, are rounded and form aggregates in vitro, yet are more invasive than 

cancer cell lines with single, elongated cell morphologies 33. Another well-studied breast cancer 

cell line, MDA-MB-231, adopts both elongated, mesenchymal, and rounded, amoeboid 

morphologies as a bi-modal invasion strategy to overcome microenvironmental barriers 34. In 

previous studies, support vector machines (SVM) were used to classify rounded and elongated 

MDA-MB-231 cells 5 and distinguish MCF-7 and MDA-MB-231 cells from non-cancer epithelial 

and mesenchymal cell lines 9. These studies raised the question of whether a universal score could 

be developed to grade cells along the spectrum of epithelial to mesenchymal features. 

Since results from previous studies classified cells based on textural and shape-based phase map 

features, we hypothesized that a quantitative score from machine learning algorithms trained on 

non-cancer epithelial and mesenchymal cell lines could be used to assign mesenchymal or 

epithelial morphological status to cancer cells. To test this hypothesis, a binary classifier of two 

non-cancer gingival cell lines, one epithelial and one fibroblast/mesenchymal, was evaluated. 

Then, the algorithm trained on non-cancer cells was applied to two cancer cell lines of mixed 

morphology, and an epithelial-mesenchymal (EM) score was derived. Results indicate that such 

an approach accurately classifies epithelial and mesenchymal cell lines and assigns cancer cells a 

phenotypic score on the epithelial-mesenchymal axis consistent with observed morphology. We 

propose this approach of deriving morphological phenotypic scores from machine learning on 

archetypal cells as a generally useful and robust way to assess phenotypic characteristics of 

unknown cell populations and single cells which eventually is promising to both future clinical 

and research applications.  

 

Materials and methods 

Cell culture  

Cell culture procedures were followed as in 9. For DHM imaging, cells were passaged when 

reaching 80-90% confluence and seeded on glass-bottomed petri dishes. Immortalized human 

gingival keratinocytes (Gie-No3B11, abbreviated as GIE, derived from buccal gingiva)35, 

immortalized human gingival fibroblasts (HGF, derived from American Type Culture Collection 



CRL-2014 primary gingival cells)36,37, and the breast cancer cell lines MCF-738 and MDA-MB-

23139, both adenocarcinomas derived from pleural effusions, were seeded at respective densities 

60,000 40,000 40,000 and 30,000 cells in a 35 mm diameter glass-bottomed Petri dish (Part #. 

229632 CELLTREAT Scientific Products, Pepperell, Massachusetts, USA). The different 

densities were estimated to produce a roughly equal number of cells per field of view after 24 

hours due to differences in growth rates and aggregation. Cancer cell lines were fed with 

Dulbecco’s modified Eagle’s medium (Lot # SLBW4140, Sigma-Aldrich, St. Louis, MO, USA), 

supplemented with 10% Fetalgro (Rocky Mountain Biologicals, Missoula, Montana) and 1% 

penicillin-streptomycin (Corning Inc., Corning, New York). The HGF and GIE cell lines were 

cultured in Prigrow 3 and Prigrow 4, respectively (Applied Biological Materials, Inc., British 

Columbia, Canada). Nutrient media for gingival cell lines were supplemented with 10% fetal 

bovine serum and 1% penicillin-streptomycin. When cells started to adhere after 24 hours, cells 

were fed with 200 µl of fresh, pre-warmed media and were covered with sterile cover slips. In 

order to avoid effects on cells from the ambient environment, each imaging session was performed 

over 15-20 minutes of total time out of the incubator.  

DHM set up, imaging and pre-processing  

A detailed description of the telecentric DHM set-up and image processing was described in the 

following published studies which is reported to optically compensate for phase aberrations 

resulting to the ease of computational process 2,5, 40. The telecentric DHM setup (Fig. 1) is based 

on a bi-telecentric configuration that optically cancels the bulk of the spherical aberrations caused 

by the microscope objectives (MOs).  The lateral resolution was 1.2 µm with 0.18 µm x 0.18 µm 

pixel dimensions of the lateral reconstruction. A 632 nm wavelength HeNe laser was used to 

generate sample and reference beams that recombined at the camera sensor plane as holograms. 

The holograms were captured by a 1.3 MP CMOS camera (Lumenera Corporation, Inc., Ontario, 

Canada) and the reconstructed phase map was obtained using the Fresnel reconstruction 

algorithm2.  

Principal component analysis (PCA) was employed to cancel the main hologram phase aberrations. 

The following steps summarize the PCA algorithm: (a) Perform singular value decomposition 

(SVD) to obtain the first dominant PC, (b) obtain the linear and quadratic coefficients of the phase 

vectors from least square fitting of the two dominant singular vectors, (c) use these coefficients to 

compute the phase at the camera sensor, φ(k,l), and (d) multiply the conjugate φ*(k,l) with the 

hologram to obtain exp[-jφob(k,l)], which is the phase due to the biological sample without 

contributions of MOs and tilt. 

Machine learning and epithelial-mesenchymal score generation 

Machine learning algorithms were evaluated and used to classify gingival cells and for transfer 

learning on cancer cells to define an epithelial-mesenchymal score (Fig. 2). Cells were segmented 

and seventeen phase parameters extracted from each of the four cell lines using a custom-written 

code in MATLAB (version R2015a) which was followed as in 59. Parameters are described in 

Supplemental Table S1. In total, there were 1,295 cells from four different cell lines which were 

segmented throughout this study including 332 cells of GIE, 309 cells of HGF, 307 cells of MCF-

7 and 347 cells of MDA-MB-231.  

Data were randomly partitioned at a ratio of 4:1 for training and testing. Training was performed 

on parameters from 252 and 229 GIE and HGF cells, respectively, following a five-fold cross 

validation. First, the 17 phase parameter predictors were transformed into principal components 



(PCs) using PCA, and the PCA-transformed data used as inputs for training following five-fold 

cross-validation. Training and cross-validation using linear SVM was performed five times each, 

selecting 1 – 17 principal components as predictors. To evaluate the highest prediction accuracy 

during training, a one-factor ANOVA was performed for accuracy on a certain number of principal 

components used, with a Dunnett’s post hoc test to compare results to those of 1 principal 

component. Then, several single and ensemble methods were trained using the same number of 

PCs found to produce the highest accuracy from the linear SVM algorithm. Default settings in 

MATLAB were used for each classifier, including a cost parameter of 1 for misclassification. 

Accuracy was evaluated by comparing output labels to true cell line labels. These were compared 

to each other using a two-tailed Student’s t-test. Results were reported as the mean ± standard 

deviation. Plots of the first two PCs and receiver operating characteristic curves for the best single 

and best ensemble method classifier were constructed. 

These most accurate single and ensemble algorithms in training were exported as two models in 

the MATLAB workspace using the classificationLearner application. Each model was applied to 

the PCA-transformed data of 307 cells from MCF-7 and 347 cells from MDA-MB-231, combined 

with the 80 cells of GIE and 80 cells of the HGF cell lines used for testing. Besides the 

classification accuracy, SVM scores, Boosted Trees (AdaBoost) scores, Bagged Trees scores and 

SVM posterior probabilities, defined below, were also calculated. Cells from the two cancer cell 

lines MDA-MB-231 and MCF-7 were assigned as either “mesenchymal” or “epithelial”, based on 

the binary classifier. All scores and posterior probabilities were plotted in histograms to evaluate 

performance as an epithelial-mesenchymal score. In addition, SVM scores and posterior 

probabilities were correlated to determine the relative sensitivity of the score and probability 

throughout their respective ranges. The SVM score, 𝑠𝑗, the distance of the observation j to the 

decision boundary, was calculated as 41: 

𝑠𝑗 = (
𝑥𝑗

𝑠𝑘
)

′

𝛽 + 𝑏   (1),  

where 𝑥𝑗 is the predictor data of observation j, 𝑠𝑘 = 2.5196 is the linear kernel scale, 𝛽 is the 

vector of fitted linear coefficients, and 𝑏 is the intercept of the hyperplane defining the separation. 

The posterior probability, 𝑃(𝑠𝑗), was calculated as 42: 

𝑃(𝑠𝑗) = 1/(1 + exp(𝐴𝑠𝑗 + 𝐵))   (2),  

where A and B are fitted slope and intercept, respectively, of the sigmoid function. Meanwhile, 

the prediction score for Adaboost, ranging from -∞ to +∞, was defined as 43: 

𝑓(𝑥) = ∑ [𝑎𝑡ℎ𝑡(𝑥)]𝑇
𝑡=1    (3), 

where 𝑎𝑡 = 0.5 log((1 − 𝜀𝑡)/ 𝜀𝑡) are weights of the sequential learners’ hypotheses,  𝜀𝑡 is the 

weighted classification error of learner t, ℎ𝑡(𝑥) the prediction of learner t for prediction data 𝑥, 

for T total learners. The prediction scores for Boosted Trees are estimated posterior probabilities 
44, 

�̂�𝑏𝑎𝑔(𝑐|𝑥) = ∑ [𝑎𝑡�̂�𝑡(𝑐|𝑥)𝐼(𝑡 𝜖 𝑆)]𝑇
𝑡=1 / ∑ [𝑎𝑡𝐼(𝑡 𝜖 𝑆)]𝑇

𝑡=1    (4), 

where �̂�𝑡(𝑐|𝑥) is the estimated posterior probability of learner t for class c given predictor data x, 

and 𝐼(𝑡 𝜖 𝑆) is 1 when learner t is of the indices S from trees used in the prediction, else 0. 

 



Results  

Cell morphologies from optical phase maps vary across and within cell lines 

Cell shapes from GIE (Fig. 3A) and HGF (Fig. 3D) cell lines resemble epithelial and mesenchymal 

morphologies, respectively.  While GIE cells were more rounded and aggregated in clusters, HGF 

cells were more elongated with lower phase signals in pixels within the cell body. The cancer cell 

lines had morphologies in between GIE and HGF cells, with a more punctate phase texture (Fig. 

3B and 3C). Cells from the MCF-7 cell line form epithelial-like clusters with sharp cell and cluster 

boundaries (Fig. 3B). Cells from the MDA-MB-231 cell line (Fig. 3C) appeared both rounded and 

elongated and were typically isolated. 

 

Classification of epithelial and mesenchymal cell lines is highly accurate 

Binary classification was evaluated for multiple algorithms available in the MATLAB machine 

learning and statistics toolbox, using the training set of 481 cell phase maps (n=252 from the GIE 

cell line, n=229 from the HGF cell line), all PCs as predictors, with accuracies ranging from 82 to 

96%, and highest for linear SVM. Tuning the hyperparameters of box constraint level and kernel 

scale did not improve training accuracy. Therefore, the number of PCs used as predictors to linear 

SVM was varied from 1-17 (Table 1). Linear SVM with 6, 8, and 17 PCs all produced higher 

training accuracies than 1 PC (ANOVA, F-47.6, p<0.001, Dunnett’s test vs. 1 PC, p<0.001). Six 

PCs were selected for use based on this statistical test and on previous models classifying cells 

based on phase features, which selected 6 PCs as the smallest number producing no increase in 

area under the curve of receiver operating characteristic curves. Linear SVM training resulted in 

an accuracy of 95.5%±0.3%. Training using SVMs with different kernel functions (quadratic, 

cubic, gaussian), decision trees, or k=1 nearest neighbor methods did not improve accuracy. The 

best ensemble method classifier was Bagged Trees (Bag ensemble method, 200 learners, and 

learning rate of 0.1), which did not further improve the accuracy than the best single method (t-

test, p=0.25). Boosted trees (Adaboost algorithm, 200 learners, 0.1 learning rate) produced lower 

accuracy than linear SVM, each trained on 6 PCs (t-test, p<0.01). Figure 4(A-D) provides 

scatterplots of principal components 1 versus 2 and ROC curves for the best performing single and 

ensemble methods from model training and validation.   

Testing based on the linear SVM and Bagged Trees models on a niave dataset of n=80 cells each 

from GIE and HGF cell lines produced error rates of 2.5-3.7% and 0%, respectively (Fig. 4E,F). 

Transfer learning using the linear SVM model classified 286/307 (87.0%) of MCF-7 cells as 

epithelial (GIE class), and 326/347 (93.9%) of MDA-MD-231 cells as mesenchymal (HGF class, 

data not shown). Transfer learning using the Bagged Trees model classified 262/307 (78.1%) of 

MCF-7 cells as epithelial (GIE class), and 329/347 (94.8%) of MDA-MD-231 cells as 

mesenchymal (HGF class, data not shown). Linear SVM, Bagged Trees, and Boosted Trees 

algorithms were used to calculate prediction scores for each cell of the test and transfer datasets 

(Fig. 5). 

 

 

Binary epithelial-mesenchymal classifier prediction scores separate cancer cells by morphology 



The distributions of prediction scores from linear SVM as Euclidean distance from the classifying 

hyperplane (Fig. 5A), posterior probabilities (Fig. 5B), Boosted Trees (Fig. 5C) and Bagged Trees 

(Fig. 5D) were evaluated. Histograms of linear SVM prediction scores (Fig. 5A, Eq. 1) produced 

the most normal distributions for test data of GIE and HGF, and transfer datasets of MCF-7 and 

MDA-MB-231 cells. Posterior probabilities from SVM (Fig. 5B, Eq. 2) and estimated posterior 

probabilities from Boosted Trees (Fig. 5C, Eq. 3) demonstrated excellent separation of classes but 

weighted toward 0 and 1. The Boosted Trees predictions produced bimodal distributions of MCF-

7 and MDA-MB-231 cell scores (Fig. 5D, Eq. 4). Four scores from HGF cells were outliers, and 

so not included in the histograms. The outliers were extreme high SVM scores more than 5.6 

standard deviations away from the population mean score. Correlations between linear SVM 

prediction scores versus posterior probabilities (Fig. 6A), and versus estimated posterior 

probabilities from Bagged Trees (Fig. 6B) were highly nonlinear for low and high scores of each. 

The correlation between linear SVM versus Boosted Trees prediction scores (Fig.  6C) was linear 

for central scores, but nonlinear overall, with discrete levels of Boosted Trees scores favored at 

low and high ends of the score range. 
 

Cell phase maps representing the linear SVM (Fig. 7) and Boosted Trees (Fig. 8) prediction scores 

closest to minima, maxima, medians, and first and third quartiles demonstrated a graded 

appearance between epithelial and mesenchymal phenotypes, as represented by the cells nearest 

the median score from GIE and HGF cells, respectively (also depicted in Fig. 7 and 8). The selected 

cells are for the most part different (except for the MCF-7 Max and MDA-MB-231 Min, which 

were the same from the two scores) but reflect a trend of more mesenchymal morphology with 

higher score. 

DISCUSSION 

Machine learning algorithms applied to quantitative phase imaging of adherent cells in culture 

classify cell lines in a way useful for determining the functional phenotype on an epithelial-

mesenchymal axis. This study proposes a transfer learning approach to define a graded phenotypic 

classification for breast cancer cells: train a binary classifier on known epithelial and mesenchymal 

cells, then test on the cancer cells of unknown phenotype, defining prediction scores for each 

unknown cell. The algorithms producing score distributions of cancer cells most evenly distributed 

between epithelial and mesenchymal extremes were linear SVM and Boosted Trees (AdaBoost) 

scores. The SVM score, the Euclidean distance to the linear hyperplane separating epithelial and 

mesenchymal classes, produced normal-appearing distributions within the cancer cell lines easily 

interpretable as lying along an epithelial-mesenchymal continuum. The Boosted Trees score also 

produced a prediction score able to be interpreted as an epithelial-mesenchymal continuum, but 

with bimodal score distributions for the cancer cell transfer learning predictions. These prediction 

scores from binary classifiers serve as robust, quantitative epithelial-mesenchymal scores to define 

unknown cells with morphologies blended in between two morphological extremes. 

This proof-of-concept study has several strengths in design and analyses but also weaknesses 

related to the necessarily limited dataset. Strengths include the large numbers of cells imaged 

(>300 per cell line) and use of MCF-7 and MDA-MB-231 cell lines, well-characterized as being 

more epithelial and mesenchymal in nature, respectively. Quantitative phase imaging using DHM 

provides high accuracy of cell morphological measurements as well as pixel-level textural details 
5,9. One potential concern is the consistency of the scoring results if different non-cancer epithelial 

and mesenchymal cells were used, instead of the gingival cells available for this study. The smooth 



histogram in Fig.5A and graded appearance of cells from low to high scores in Fig. 7 and 8 increase 

confidence in the broad applicability of the developed scores. Still, a classifier trained on syngeneic 

non-cancer cells derived from the same tissue as the cancer would likely be more patient-specific. 

The bimodal nature of AdaBoost prediction scores for breast cancer cells (Fig. 5C) and granularity 

of AdaBoost scores at low and high ends of the range (Fig. 6B) are a weakness of the AdaBoost 

predictions compared to linear SVM prediction scores. This is explained by the iterative AdaBoost 

training algorithm that trains more learners on data that is harder to classify, i.e. is misclassified 

by initial learners in the ensemble method. The proposed epithelial-mesenchymal score requires 

validation with additional cancer cells of different epithelial and mesenchymal morphologies from 

various breast cancer subtypes 45. Despite these limitations to the current training and test datasets, 

the transfer learning method proposed here quantitatively sorts individual cells along a putative 

morphological axis that produces well-ranked cells by visual inspection, which common 

geometrical features including thickness, area and eccentricity were not incapable of (Fig. 7,8).   

Morphological evaluation using an epithelial-mesenchymal score as proposed here could address 

a major issue in histology-based diagnostics deriving from cell to cell heterogeneity. Such 

heterogeneity, especially in the absence of specific molecular biomarkers, makes risk stratification, 

diagnosis and selection of treatment regimens less accurate 46. In phenotypic screening, DHM 

followed by assignment of a machine learning prediction score to individual cells would allow the 

detection of subtle morphological shifts in response to drug candidates, a task of increasing 

importance in drug discovery 47. Morphological evaluation is of potential utility in phenotypic 

screening and basic studies linking gene expression to phenotype and functional behavior. In this 

study, two breast cancer cell lines, MCF-7 and MDA-MB-231, were scored on an epithelial-

mesenchymal axis by linear SVM, consistent with their morphological appearance. These cell lines 

are well known for appearing with clustered epithelial-type and single, mesenchymal-type 

morphologies, respectively due to differential expression of mesenchymal gene expression in 

MDA-MB-231 cells, including N-Cadherin, Snail, Slug, ZEB1 and 2, and Yes-associated protein 

1 (YAP1) 48, or Snail, a transcription factor typical of mesenchymal cells, in MCF-7 cells 49. Such 

basic studies have potential impact in defining the roles of epithelial and mesenchymal phenotypes 

in cancer behavior, leading to a better understanding of phenotypic transitions and plasticity in 

cancer.  An epithelial-mesenchymal score would aid such efforts by establishing the magnitude of 

phenotypic shifts with a given treatment. 

An epithelial-mesenchymal score has utility in interpreting qualitative morphologic assignments. 

One exciting future development of such an approach would be to determine the sensitivity of the 

epithelial-mesenchymal score to differential expression of individual genes, something best 

achieved by direct comparison of parental and genetic knockout cell lines. There is some evidence 

that qualitative morphological classes do not correspond to invasiveness in all cases 33. This finding 

is consistent with at least a subset of genes being responsible for invasiveness but not aggregate 

morphology, a hypothesis which is testable through sequential genetic knockout, epithelial-

mesenchymal scoring, and assessment of invasiveness in vitro. Quantitative phase imaging of 

cancer cells in functional assays combined with classification scores such as the proposed 

epithelial-mesenchymal score could aid such studies.  In single cell studies, phase images of cells 

of interest could guide laser-capture microdissection to link observed behavior, morphology, and 

gene expression at a single cell level. Indeed, advanced machine learning techniques have recently 

been applied to isolate cell subpopulations based on phenotypic differences 50. The EM score 

concept described here could be applied to support decision making and actuation in intelligent 

cell sorting systems to determine the effects of cell heterogeneity 51. 



Significance of the work  

This study proposes a concept of morphological score derived optical phase map and machine 

learning prediction score to sort unknown cancer cells along a recognizable morphological axis of 

a well-characterized epithelial and mesenchymal cell lines.  This approach to sorting adherent cells 

has applications for phenotypic screening of cell lines exposed to drug candidates, as well as 

evaluating phenotype of unknown cells in a histological section derived from a cancer biopsy. 

Quantitative analyses proposed here can be applied to examine events in non-cancerous settings 

where epithelial versus mesenchymal cells play critical roles in development or wound healing 52. 

A quantitative epithelial-mesenchymal score simplifies morphological evaluation and allows for 

future analysis of individual cells within a population to link cell phenotype, morphology, and 

gene expression. 
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Figures and table 

 

 

 

 

 
Fig. 1 The bi-telecentric digital holographic microscope in transmission configuration, including microscope 

objective (MO), beamsplitters (BS), object beam (O), reference beam (R) and CMOS camera.  

 
Fig. 2 Machine learning was performed on 1-17 features derived from phase maps reconstructed from adherent 

cells’ holograms. Derived features from epithelial (GIE) and mesenchymal (HGF) cell types were used for 

training. For transfer learning, six principle components representing most of the variation in cell phase maps 

from two untrained cancer cell lines, MCF-7 and MDA-MB-231, were used for testing and to generate machine 

learning prediction scores as candidates for an epithelial-mesenchymal score. 



 

 

 

 

 

 
Fig. 3 Representative DHM phase maps from living, adherent cells of (A) Gie-No3B11 (GIE), (B) MCF-7, 

(C) MDA-MB-231, (D) HGF cell lines. The cells are ordered qualitatively on an epithelial-mesenchymal axis 

based on cell morphology apparent in phase maps. Scale and phase bars are indicated. 



 

 

 

 

 

 
 

Fig. 4 Binary classifier training data (A,B) scatterplots of principal component (PC) 1 versus 2, highlighting 

correctly classified GIE (red circle) and HGF (cyan circle) cells, and misclassified cells (red and cyan x’s, with 

color representing the true class). (C,D) Receiver operating characteristic curves from training data, with area 

under the curve (AUC) listed. (E-F) Error tables from a test dataset for (E) Bagged Trees, and (F) linear SVM.  

 
 
 



 

 

 

 

 
 

 
Fig. 5 Prediction scores for transfer learning of an epithelial-mesenchymal classifier to cancer cells. Histograms 

of prediction score distributions for (A) SVM predictions, (B) SVM posterior probabilities, (C) AdaBoost 

predictions, and (D) estimated posterior probabilities from Boosted Trees, for test datasets of n=80 GIE cells 

(black dashed line) and n=80 HGF cells (black solid line), and transfer learning datasets of n=307 MCF-7 cells 

(gray dashed line) and n=347 MDA-MB-231 cells (gray solid line). 

 



 

 

 

 

 

 

 

 

 
Fig. 6 Correlation plots of linear SVM prediction scores versus (A) posterior probability scores from 

SVM, (B) AdaBoost prediction scores, and (C) estimated posterior probability scores from Bagged Trees, 

for the dataset of 814 cells defined previously from GIE, HGF, MCF-7 and MDA-MB-231 cell lines. 



 

 

 

Fig. 7 Phase maps of epithelial, mesenchymal, and breast cancer cells representing the median SVM score of 

normal cell line (A) GIE and (D) HGF. The minimum, first quartile, median, second quartile, and maximum 

SVM score for cancer cell lines of (B) MCF-7 and (C) MDA-MB-231. SVM scores were derived from a binary 

classification SVM model trained on GIE and HGF cells, then tested on breast cancer cells to generate weighted 

classification scores. Phase height (ᵩ) in nm, area (A) in µm2 and eccentricity (E) generated by DHM were listed 

in each cell map.   

 

 



 

 

 

Fig. 8 Phase maps of epithelial, mesenchymal, and breast cancer cells representing the median AdaBoost score 

of normal cell line (A) GIE and (D) HGF. The minimum, first quartile, median, second quartile, and maximum 

AdaBoost score for cancer cell lines of (B) MCF-7 and (C) MDA-MB-231. AdaBoost scores were derived from 

a binary classification AdaBoost model trained on GIE and HGF cells, then tested on breast cancer cells to 

generate weighted classification scores. Phase height (ᵩ) in nm, area (A) in µm2 and eccentricity (E) generated 

by DHM were listed in each cell map.   



 

 

 

 

 

 

 

 

 

Table 1 Training accuracy of various machine learning algorithms to classify 

epithelial and mesenchymal cells. 

type method accuracy  

(%, μ±SD) 

si
n
g
le

 

Linear SVM, 1 PC 93.0±0.2 

Linear SVM, 2 PCs 93.0±0.2 

Linear SVM, 4 PCs 92.8±0.3 

Linear SVM, 5 PCs 93.4±0.6 

Linear SVM, 6 PCs* 95.5±0.3 

Linear SVM, 8 PCs* 95.1±0.3 

Linear SVM, 17 PCs* 95.2±0.6 

Other SVMs, 6 PCs 95.4±3.9 

Decision trees, 6 PCs 91.6±0.2 

Nearest Neighbor, 6 PCs 88.9±3.7 

en
se

m
b
le

 Boosted Trees, 6 PCs, 

Adaboost** 

94.3±0.5 

Bagged Trees, 6 PCs,  

Bag 

95.2±0.4 

PCs, principal components; SVM, support vector machines 

*p<0.001, ANOVA and post hoc Dunnett’s test vs. linear SVM, 1 PC 
**p<0.001, Student’s t-test, vs. linear SVM, 6 PCs 



 

Table S1. List of 17 cell parameters generated from DHM segmentation using a written Matlab code 

μ CellMean Average phase height 32-bit full, in nm 

𝜇 =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 

SD CellStd Phase height standard deviation 32-bit full, in nm 

𝑆𝐷 = √
1

𝑁 − 1
∑ |𝐴𝑖−𝜇|2

𝑁

𝑖=1

 

ku Kurt Phase height kurtosis 32-bit full 
𝑘 =

𝐸(𝑥 − 𝜇)4

𝜎4
 

sk Skew  Phase height skewness 32-bit full 
𝑠𝑘 =

𝐸(𝑥 − 𝜇)3

𝜎3
 

Ar Stats.Area Segmented cell area Units of pixels -- 

Per  Stats.Eccentricity Segmented cell fit ellipse 

eccentricity 

Units of pixels -- 

Ecc Stats.Perimeter Segmented cell perimeter Units of pixels -- 

Co  Stats2.Contrast 
2

nd

 order texture parameter 
8-bit scaled 

∑|𝑖 − 𝑗|2𝑝(𝑖, 𝑗)

𝑖,𝑗

 

Cor  Stats2.Correlation 
2

nd

 order texture parameter 
8-bit scaled 

∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)𝑝(𝑖, 𝑗)

𝜎𝑖𝜎𝑗
𝑖,𝑗

 

En  Stats2.Energy 
2

nd

 order texture parameter 
8-bit scaled 

∑ 𝑝(𝑖, 𝑗)2

𝑖,𝑗

 

Hm  Stats2.Homogeneity 
2

nd

 order texture parameter 
8-bit scaled 

∑
𝑝(𝑖, 𝑗)

1 + |𝑖 − 𝑗|
𝑖,𝑗

 

µ
n
 Nucleus mean Average nucleus phase height 32-bit full, in nm  See Cell Mean 

µ
nm

 Nucleus maximum mean Maximum nucleus phase height 32-bit full, in nm -- 

a Nucleus area Segmented nucleus area Units of pixels -- 

sd Nucleus Std Nucleus phase height standard 

deviation 

32-bit full, in nm See Cell Standard Deviation 

kn Nucleus kurtosis Phase height kurtosis 32-bit full  See kurtosis 

skn Nucleus skew Phase height skewness 32-bit full  See skew 

 


