Developing Vision-enabled Autonomous Driving
Capabilities For Competitive Robotics

Natnael Kelkay Gordon Franken
Montgomery Blair High School Intelligent Automation Inc

Justin Hudis
University of Maryland

Abstract

Our project focused on the capabilities of Limelight; an easy-to-use smart
camera for the FIRST Robotics Competition (FRC). We developed code to gen-
erate a path for a robot given a target. We started by tuning parameters for
computer vision-based target detection and characterizing the performance of
the Limelight’s target detection. This procedure involved receiving feedback
from the Limelight by locating the vision target’s position. We did this by us-
ing a mini-robot connected to the Limelight, and by collecting live feedback
through a dashboard called Shuffleboard. With Shuffleboard, we were able
to record and export data from the Limelight as a Comma-separated values
(CSV) file. We calculated the mean and the standard deviation of each dimen-
sion measured to determine noise and bias. We then used linear regression to
examine the effects of the target’s distance from the Limelight in each dimen-
sion on the resultant error. The next step for this project is implementing the
vision pipeline to go from target detection to path planning/following. We
have written code for the path generation that is currently under testing and
development.

1 Introduction

In FIRST Robotics Competition (FRC), an international high school robotics competition,
vision is a big part of the game. Each year there has been consistent use of vision targets
for the robots to use for the game challenges. This research project presents a way to im-
prove teams’ capabilities in the areas of computer vision and autonomy. As FIRST started
moving away from the pure autonomous period, they switched towards vision targets.
Recently, there is a relative benefit of vision-based autonomy versus remote operation via
camera, which highlights the need to improve our vision and autonomy capabilities. The
object of this research is to develop a program that will allow a robot to generate a path on
its own, given a target. There are many methods to calculate a robots forward and inverse
kinematics. The literature on Introduction to Autonomous Mobile Robot covers different
topics, but the topics relevant to our research are Mobile Robot Kinematics and Planning
and Navigation. The paper provides a method for calculating the forward kinematics of a
robot and suggests how to apply that to a control software for an instance of mobile robot
hardware. Our work also emphasizes the importance of understanding the mechanical as-
pect of the robots behavior before writing any code. It helped define the various methods
we could use during the start of this project. The article on Reactive Path Deformation for

Nonholonomic Mobile Robots covers methods on how to calculate paths for robots that
depend on the path taken in order to achieve their targets. The core idea of their approach
is to perturb the input functions of the system along the current path in order to modify
this path (Lamiraux, pg 1). The article helped bring forth the idea of generating a basic low
resolution path to the target, and having that path split up into different sections. Once the
robot gets to the first section it will create a more detailed path and use it. When it gets to
the second section, it will do the same until it reaches its target.

The vision targets we tested with are made of retro-reflective tape. For this research,
we used two vision targets only a few inches apart in the space of a triangle. The camera
we used for this research was a Limelight. It was created specifically for FRC robots which
makes it easier for this research. The research required access to a robot and laboratory
to conduct the tests. The experiment consisted of a visual target being placed at different
positions to test the capabilities of the camera. We were able to conclude from the data
how the magnitude of x, y, and theta affect the error of the Limelight’s target detection and
to what extent.

2 Methodology

2.1 Tuning Parameters for Computer Vision-based Target Detection

The Limelight vision pipeline is comprised of five tuning tabs: input, thresholding, con-
tour filtering, output, and 3D. Thresholding was the main focus for conducting the exper-
iments—it included variables such as hue, saturation, and value that allows us to throw
away any pixels that were not in a specific color range. The result of thresholding is gen-
erally a one-dimensional image in which each pixel is either “on” or “off.” After tuning
the hue, saturation, and value, a clear image of the vision target is visible for conducting

experiments.

2.2 Performance Characterization of Target Detection
2.2.1 Initial configurations and finding the Limelight’s vision range

We first collected data from the Limelight to identify the best position for accurate vision
detection. In order to get readings from the Limelight, we had to connect it to a working
robot. The robot we used is called Robot-in-a-box (RIAB). It was developed by the Mont-
gomery Blair High School robotics team. Once the Limelight was connected to the robot,
we opened a software called Driver Station. Driver Station station is a software that must
be used to drive FRC robots. After the limelight was running we used our own vision
target to see how far and to what extent it could detect the target. We tested every position
possible around the limelight and the range it could pick up the vision target was in a cone
shape.

2.2.2 Experimental setup

The vision targets are two reflective strips taped on to a wooden platform as shown in
tigure 1. One pair of the vision target is 5 in. (14 cm) long by 2 in. (5 cm) wide strips of
3M 8830 Scotchlite Reflective Material. Strips are angled toward each other at 14.5 degrees
with a tolerance of approximately 1 degree in respect to the part to which it’s adhered (FRC
2019 Game Manual).

Figure 1: Vision target with retro reflective tapes

The setup for this experiment is as seen in figure 2. We attached the robot-in-a-box to
the Limelight and computer and laid it out on a table. The Limelight was attached to the
edge of the table and shined toward the vision target. On the floor we added marks each
equally spaced out 12 inches from each other. As shown in the image below, there were

about 29 possible testing locations.

Figure 2: Experiment setup with the Limelight and the vision target

We also had degrees measured on a paper to align the vision target when testing. We
Included 0°, 10°, 15°, 20°, 30°, 40°, and 60° in the testing. We ran into problems with some
software issues that did not allow detection when the Limelight was turned to the right,

so all of the data was collected by turning the Limelight to the left.

Figure 3: Limelight’s cone/range of detection. The marks on the floor indicate the possible
vision target detection positions for the limelight.

2.2.3 Experimental variables and ranges they were sampled

Through the Shuffleboard, we are able to receive live feed back from the network tables
of the Limelight. One of the variables we recorded was the camtran—It stores the results
of a 3D position solution, 6 numbers: Translation (x,y,y) and Rotation (pitch,yaw,roll). The
only data points that were relevant to this characterization were the x, y and yaw. The x,
y, and yaw give us delta x, delta y, and delta theta relative to the Limelight and the vision
targets. Other critical variables were the time stamps. The time stamps were laps on a
timer the indicated the data we want to examine.

2.2.4 Raw data was collected

The PnP point-based pose estimation given by the Limelight’s pipeline, made it easy to
obtain the x, y, and theta values. The Shuffleboard had a recording feature, so once the
Limelight was connected and running, the shuffleboard was able to record the values we
wanted—specifically the camtran. During the experiment, we placed the vision targets on
the 29 testing locations one by one for about 2 seconds each. To account for the timings
for each location, we used a timer. Whenever we had a good detection signal from the
limelight, we would lap the timer to indicate that the 2 seconds after was the data we
wanted to use for analysis. For each location, we recorded 7 times for each degree, so that
was a total of 14 seconds of data for each location.

2.2.5 Raw data was post-processing

We exported the recording as a comma-separated value (CSV) file and uploaded it to an
Excel file. Since the raw data given had many data points, we had to open it as an Excel
file and filter out the camtran values. Once that was done, we used Python to do the
data calculations. The first task before running the code was to convert the timestamps

from seconds to milliseconds (since the shuffleboard stores time in milliseconds). Then we

stored the x and y values of each position/location in order (in feet X is lateral distance, Y
is distance in front). The tested angles of the target were also stored in variables.

The database was split up into two sections, one with outliers and the other without.
We did this to compare and contrast the difference between the margin of errors from the
data with and without the outliers. The outliers that were omitted for the no outlier data
were generally the ones from distances far from the vision target—it was either inconsis-
tent or undetectable.

2.3 Code Testing setup

The vision code we used to generate a path was written on a computer called Nvidia Jetson
model TK1. The code was written in C. We connected the Jetson (figure 4) to the robot so

the both platforms can communicate.

Figure 4: Jetson TK1—used to store and run path generation code written in C

The robot code runs the execution code while the Jetson runs the code for the path
generation. To access the code in the Jeston we had to use a monitor (figure 5). When the
code was ready there was no need to use the monitor because all the code can be accessed
through the Jetson.

The basic set-up is shown in figure 5. To connect the robot to the Jetson we used an eth-
ernet cable, and to connect the robot to the computer we used wireless connection through

a radio, but wired connection was open as a possibility.

Figure 5: Code communication setup. The Monitor is connected to the Jetson, the Jetson is
connected to the robot, and the robot is connected to the laptop.

3 Results

3.1 Analyzing mean and std deviation to determine noise and bias

The mean and standard division was calculated by time intervals we set for each test.
Going back to figure 3 (Limilght’s cone) we can see the 29 spots the decision target was
placed to test the limelight. For each point, determined the angel the vision target was at,
the delta x from its poison to the vision target, and the delta y from its position. For every
position test, we only considered the first two seconds after it was placed on the position.
Because of the abundance of data, we took the averages and standard deviation for those
time intervals. The standard deviation told us how far away the actual value was from the
mean. Having that figure allowed us to create another dataset without the outliers. We
took out all the standard deviations that were too high and placed the filtered data into a

new sheet.

3.2 Usinglinear regression to examine the effects of the measurement variables
on resultant error

Linear Reg Coefficients
With Noisy Outliers Without Noisy Outliers
Abs. X Abs. Y Abs. Theta Abs. X Abs. Y Abs. Theta
Error Error Error Error Error Error
Abs. X -0.08 0.06 -0.27 |Abs. X -0.41 0.01 -0.41
Abs. Y 0.31 0.08 0.20 |Abs. Y 0.46 0.14 0.24
Abs. Theta 0.68 0.15 0.11 |Abs. Theta 0.84 0.18 0.07

Figure 6: Table of the linear regression coefficients for the errors in the x, y and theta axis

Using linear regression, we set out to determine how efficient the limelight was. The linear
regression coefficients with the noisy outliers data show that most of the values are greater
than 0. This means that as the vision target goes further away in the x and y plane, the
detection gets less accurate. For the absolute x value, the values for Abs. X Error and Abs.
Theta Error was negative in both cases (with and without outliers), which indicated that
the detection got better when the vision target was further from its original positions.

3.3 Data Analysis

In figures 7a and 7b, you can see the graph of the margin of error in x and y versus the
Euclidean distance from the camera to target both figures in inches. The blue dot represents
the data points collected for 60° to the left. The red dots represent the data points collected
for 40° to the left and so on. With these graphs, we are able to confirm the conclusion that
the Limelights detection works best when the vision targets are closer to it. The graph
has an increasing curve trend. As the distance the vision target was from the limelight

Noise in X vs. Distance To Target Noise in Y vs. Distance To Target

. 6 60
1 . ® o) ° . [¢)

= 1 . ~ 55 @ 40
£ s ® A e 5 & °®
P o . B 0 4 o ”
S o8 ® 2011 S : * @® 2011
F . ° 2 - [J

0 ° 10
a = e b4 ® ® 10 & e ® 10

0.6 > 0
® 06) B) . 4
x o s 0
€ 05 : ® ° 5 Y
g 04 L 3 . @ ° .
= ® s
% 03 —) c 1 LY @ o
S o2 o o ¢ hd
B 2 @ : ° °® g € T L] ®

)1 8 e © oo 0.5 o -
z " | e o, ° & 2 * a o ;; 3
“ 0 2 [e @ o ® 0 LS.

20 30 40 50 60 80 90 100 0 30 40 50 60 7C 80 90 100

Euclidean Distance From Camera To Target (in) Euclidean Distance From Camera To Target (in)

(a) Noise in X vs. Distance to target (b) Noise in Y vs. Distance to target

Figure 7: Graphs of the errors in the x and y axis of the vision target to the Limlight

increased, the margin of error in both x and y also increased. There is a cluster at the
bottom of both graphs which is a good thing because that means the margin of error is not
too high for most data points. There are also several of outliers, some even off the chart.

The graph for the vision target’s angle from the limelight’s detection (figure 8) also
shows a similar trend. There is the same cluster at the bottom of the graph and the few
outliers above the cluster. The X, y, and theta error graphs being similar was a good indi-
cation that there was only one variable or factor that we needed to worry about. From the
analysis of the linear regression’s coefficients we concluded that as the vision target gets
farther away from the limelight, the margin of error in x, y, and theta increase.

Noise in Theta vs. Distance To Target

2
18
1.6
14
12

1
08
0.6
0.4
02

0

+Margin of Error in Theta @ 95% Conf. (deg)

«©

8 oo

! .:s...

0

10

20

30

40

[}
o | %
a|%ee o

60

70

80

90

100

@ 50
® 4
30
@ 2011
® 10

Euclidean Distance From Camera To Target (in)

Figure 8: Noise in theta vs. Distance to targe

4 Discussion

Our research project will help improve FRC robotics vision capabilities. It will allow the
robot to get a better reading from the limelight and have it better characterized. We are
still testing code and will have a product that will allow the robot to generate a path on its
own and travel to the target position on its own without having to rely on the driver. We
also plan to expand on this by applying advanced computer science topics like machine
learning to it. With machine learning, the robot will be able to not only generate a path
and travel to it, but if it encounters an obstacle, it will generate a path to reach the goal. In

addition to the path generator. We plan to create a way for the robot to detect other robots.

7

Detecting other robots will allow the robot to avoid them and easily pass through them.
One aspect of an FRC game is defense. If the other team has a strong defense, having this

detection capability will allow a robot to maneuver through them.

References

[1] Siegwart, R., Nourbakhsh, I. R. (2004) Introduction to Autonomous Mobile Robots. United
Kingdom: Bradford Book.

[2] J. Borenstein and Liqiang Feng IMeasurement and Correction of Systematic Odometry Er-
rors in Mobile Robots. in IEEE Transactions on Robotics and Automation, vol. 12, no. 6, pp.
869-880, Dec. 1996.

[3] E. Lamiraux, D. Bonnafous and O. Lefebvre Reactive Path Deformation for Nonholonomic
Mobile Robots. in IEEE Transactions on Robotics, vol. 20, no. 6, pp. 967-977, Dec. 2004.

[4] Limelight Limelight Documentation (2017, October 21). Retrieved from
http://docs.limelightvision.io/en/latest/.

[6] FIRST FRC 2019 Game Manual. (2019). FIRST FRC. Retrieved from
https:/ /firstfrc.blob.core.windows.net/frc2019 /Manual /2019FRCGameSeasonManual.pdf

	Introduction
	Methodology
	Tuning Parameters for Computer Vision-based Target Detection
	Performance Characterization of Target Detection
	Initial configurations and finding the Limelight’s vision range
	Experimental setup
	Experimental variables and ranges they were sampled
	Raw data was collected
	Raw data was post-processing

	Code Testing setup

	Results
	Analyzing mean and std deviation to determine noise and bias
	Using linear regression to examine the effects of the measurement variables on resultant error
	Data Analysis

	Discussion

