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ABSTRACT
Emotion plays an essential role in human-to-human commu-
nication, enabling us to convey feelings such as happiness,
frustration, and sincerity. While modern speech technologies
rely heavily on speech recognition and natural language un-
derstanding for speech content understanding, the investiga-
tion of vocal expression is increasingly gaining attention. Key
considerations for building robust emotion models include
characterizing and improving the extent to which a model,
given its training data distribution, is able to generalize to un-
seen data conditions. This work investigated a long-shot-term
memory (LSTM) network and a time convolution - LSTM
(TC-LSTM) to detect primitive emotion attributes such as va-
lence, arousal, and dominance, from speech. It was observed
that training with multiple datasets and using robust features
improved the concordance correlation coefficient (CCC) for
valence, by 30% with respect to the baseline system. Addi-
tionally, this work investigated how emotion primitives can
be used to detect categorical emotions such as happiness, dis-
gust, contempt, anger, and surprise from neutral speech, and
results indicated that arousal, followed by dominance was a
better detector of such emotions.

Index Terms— Vocal expression, intent, paralinguistic
features, long-short-term memory networks, emotion

1. INTRODUCTION

Detection of intent from a query is the principal task per-
formed by the majority of voice operated assistants. Intent
is primarily detected from words which are recognized from
speech, via an automated speech recognition system. Often,
voice operated assistants need to disambiguate between re-
quests that vary in terms of vocal expression, such as an ur-
gent query versus a casual observation. In these cases, the text
recognized from the speech signal may not contain sufficient
information to accurately infer the user’s intent. While the
traditional technological solution to this problem is to per-
form the disambiguation with the aid of a follow-up query,
human beings are notably adept at interpreting spoken intent
directly, by attending to vocal expression. Thus, this study
investigates the detection of vocal expression in the form of
emotion primitives through machine learning approaches.

Detection of vocal expressions in the form of emotion
has received much attention in speech technology research
within the past several years, where studies have focused on
devising robust and relevant acoustic features [1, 2], modeling
techniques [3, 4], multi-task learning [5, 6], multi-modal fu-
sion [7, 8]. Early studies on speech-based emotion detection
have used acted or elicited emotion datasets [9, 10] (where ac-
tors were recorded while speaking with specified emotions).
Observations from acted-emotion studies revealed that mod-
els trained with acted emotions may not generalize well to
spontaneous subtle emotions [11] as a consequence, datasets
containing spontaneous emotions were collected, such as the
MSP Podcast dataset [12]. The downside of collecting spon-
taneous speech emotion datasets is that they typically lack
ground-truth labels, and thus require manual annotation, that
suffer from varying degrees of grader agreement. Labels in
emotion datasets contain either categorical emotions (such as
happy, sad, neutral etc.) and/or primitive emotions (such as
valence, arousal, dominance etc.). While categorical emo-
tions are easy to interpret, they are difficult to annotate, as
they often lead to annotator disagreements, skewed datasets
and suffer from ambiguity in defining the lexicon for emotion
categories [13]. On the other hand, primitive emotions, which
are defined by the valence-arousal-dominance scale, are eas-
ier to annotate but harder to interpret, and typically generate
results that are more easily comparable. Moreover, primitive
emotions can be coarsely aggregated, to recover categorical
emotions [14].

In this work we used spontaneous speech corpus labelled
with primitive emotions and investigated the following:
(1) Role of annotator agreement on model performance.
(2) Role of acoustic features on model robustness.
(3) Whether such models are useful in detecting vocal expres-
sion in the form of happiness, disgust, contempt, anger, and
surprise.

Through our work we demonstrate that:
(a) Use of low-dimensional frame-level features (such as fil-
terbank energies) can demonstrate performance comparable
to complex feature sets investigated in the literature.
(b) Presence of additional data resources can help to improve
an emotion detection model’s performance and generaliza-
tion capacity.



(c) Simple score level fusion of multiple complimentary sys-
tems can improve the overall performance

The outline of the paper is as follows: section (2) will
present the datasets used in our study, (3) will introduce the
acoustic features investigated in this work, (4) will detail the
acoustic model and its parameters, in (5) we will present the
results, followed by conclusion in (6).

2. DATA

We use a slightly expanded version of the data used in our
earlier study [13] which contains 120 hours speech material
spoken in US English. The data had no speaker level infor-
mation. The duration of each utterance varied between 2 to
6 seconds. The data contained perceptually assigned valence,
arousal and dominance scores. For more information on this
dataset, please refer to [13]. Additionally, this study also uses
the MSP-Podcast data [12] that contains speech spoken by
English speakers collected from online audio shows, cover-
ing topics such as politics, sports, entertainment, etc. The
speech segments in this dataset contain single speaker utter-
ances with duration between 2.75 and 11 seconds. Overall
the MSP-Podcast (ver-3) data contained a little over 50 hours
of speech. The data came with speaker and gender labels,
which were not used in this study. There were altogether 588
speaker labels, where 50 speakers were present in the test set.
The remaining data was used to train the model, where 90%
of the data was used as the training set and the remaining 10%
as the cross-validation set. We will denote the MSP-Podcast
training data as MSP-train. To make our results comparable
to the literature, we will report results on MSP-Podcast (ver-
sion 2) eval set (≈ 12 hours of speech), which we will denote
as MSP-eval.

3. ACOUSTIC FEATURES

We investigated multiple acoustic features to parameterize
speech. The baseline feature is the 40-dimensional mel-
filterbank energy (MFB) features, appended by pitch, pitch-
delta and voicing features, which we denote as MFB + F0
feature. We explored 40-D gammatone filter-bank energies
(GFB) and speech modulation energies (extracted through
the amplitude modulation (MOD) feature extraction setup as
specified in [15]), both were appended with 3-D pitch (F0)
and voicing features and we denote them as GFB + F0 and
MOD + F0 features. We have used articulatory features in
the form of vocal-tract constriction variables (TV ) [16]. In
our earlier work [13] we have shown that TV s can assist in
detecting valence from the speech signal. The TV s define
degree and location of constriction actions within the human
vocal tract and have eight dimensions [16, 17]. Similar to
[13] we have used an LSTM-based speech-inversion system
which takes in spliced (window of 5 frames on both sides of
the current frame) MFB + F0 features as input and maps
that to the 8 TV trajectories.

4. ACOUSTIC MODELING

We have used single-layer LSTM networks consisting of 128
neurons in the recurrent and the embedding layers, to train
the baseline primitive emotion detection (regression) model.
The input to the model was low-level features described in
section 4, which were analyzed with a window size of 25 ms
and a frame rate of 10 ms, and the output was 3-D primi-
tive emotions: valence, arousal and dominance. The model
was tuned using a held-out dev set, and based upon that
the number of neurons in each layer and the cost function
(concordance-correlation-coefficient, CCCcost as shown in
(1)) was selected. The CCCcost is a combination (α = 1/3
and β = 1/3) of CCC’s obtained from each of the valence,
dominance and arousal dimensions. CCC for each dimension
is defined by (2), where where µx and µy are the means,
σ2
x and σ2

y are the corresponding variances for the estimated
and ground truth variables and ρ is the correlation coefficient
between those two variables. The models were trained with a
mini-batch size of 512, using Adam optimizer, with a learning
rate of 0.001. For all the model training steps, early stopping
was allowed based on cross-validation error.

CCCcost := αCCCval + βCCCaro + (1− α− β)CCCdom

(1)

CCC =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
(2)

Fig. 1. Architecture of (a) LSTM network and (b) Time con-
volution LSTM network (TC-LSTM)

Additionally, we investigated a time-convolutional layer
before the LSTM layer (TC-LSTM, shown in Figure 1),
where the number of convolutional layers (having filter size
= 3) was same as the number of input feature dimensions.
The network also had a skip connection, where acoustic fea-
tures were also fed directly to the LSTM layer in addition
to the convolutional layer outputs. The LSTM layer had
128 and 312 neurons in the recurrent and embedding layers,
respectively.



5. RESULTS AND ANALYSIS

We trained three LSTM models with (a) internal-train, (b)
MSP-train and (c) internal+MSP train data, which were evalu-
ated with internal-eval and MSP-eval data respectively. These
models were trained withMFB+F0 features and the results
are shown in table 1.

Table 1. Primitive emotion CCC from models trained with
baseline MFB+F0 features

Internal-eval MSP-eval
val aro dom val aro dom

Int-train 0.56 0.69 0.58 0.13 0.53 0.40
MSP-train 0.14 0.55 0.47 0.24 0.73 0.68
Both-tr 0.57 0.70 0.58 0.26 0.75 0.68

Fig. 2. t-SNE plot of embeddings from MSP-train and Both-tr
models, colored w.r.t valence score

Table 1 shows the impact of data mismatch between train-
ing and evaluation data. Model trained with the internal-
train data did better on the internal-eval set, while the model
trained with MSP-train, performed better for MSP-eval set,
and both failing to demonstrate similar performance on the
mismatched eval set (MSP-eval and internal-eval sets, respec-
tively). This provides some realistic interpretation of how
much performance gets impacted due to domain mismatch,
which is found to be ≈ 40% reduction in CCC. The last row
in Table 1 shows that a model trained with internal-train and
MSP-train data (followed by fine-tuning with each of those
training sets) demonstrated a much better performance for
both the eval sets. Given, that the Both-train model gave the
best baselineCCC performance for both the eval sets, we will
be using that model as our baseline in the rest of this paper.
Figure-2 shows the t-SNE plot of the embeddings obtained
from MSP-train and Both-train models for different values of
valence, where we can observe that the latter model has a bet-
ter separation of high-valence data points from low-valence
ones.

5.1. Role of Annotator Consensus
A careful analysis of the evaluation set indicated that anno-
tation consensus played an important role on evaluation per-
formance. The MSP-podcast data came with annotator deci-
sions on the primary categorical emotion, where the number
of annotators grading a specific utterance varied from five to

sixteen. The primary categorical emotion consensus on the
evaluation set is determined by the number of annotators who
selected category that received the majority vote divided by
the total number of annotators who voted for that utterance
[18]. We denote an utterance’s consensus (p(C)) by the prob-
ability of an annotator selecting the primary categorical emo-
tion that received the majority vote [18]. Table 2 presents the
results from the MSP-eval set as obtained from the baseline
model, when grouped by annotator consensus.

Table 2 presents some interesting observations on the role
of annotator consensus on performance evaluation. While va-
lence CCC always increased with increase in consensus (last
three rows in table 2), arousal and dominance remained rela-
tively stable. This may indicate that valence may be relatively
difficult to annotate and can be correlated with the consensus
emotion decision, compared to arousal and dominance. Inter-
estingly, at extremely low consensus all of the three primitive
emotions demonstrated extreme deterioration in performance,
indicating low-consensus data may not be reliable in assess-
ing a model’s performance. From these observations we can
claim that:
(1) Primitive emotion models are sensitive to annotator con-
sensus, where valence was found to be more sensitive to it
compared to arousal and dominance.
(2) Data with less than 25% consensus may not be suitable
for assessing the goodness of a model, and it may be useful to
not consider such data points.

Table 2. Primitive emotion CCC from multi-condition
trained baseline model trained when MSP-eval set is grouped
by annotator consensus

Annotator Consensus MSP-eval (CCC)
val aro dom

p(C) ≤ 0.25 0.00 0.59 0.57
p(C) ≤ 0.40 0.12 0.73 0.67
p(C) ≥ 0.50 0.32 0.77 0.70
p(C) ≥ 0.60 0.33 0.77 0.69
p(C) ≥ 0.75 0.40 0.78 0.70
p(C) ≥ 0.90 0.46 0.78 0.69

Table 3. Primitive emotionCCC from LSTM models trained
with different acoustic features

Internal-eval MSP-eval
val aro dom val aro dom

MFB + F0 0.57 0.70 0.58 0.26 0.75 0.68
GFB + F0 0.56 0.68 0.57 0.29 0.72 0.63
MOD + F0 0.56 0.69 0.56 0.30 0.72 0.63

5.2. Robustness

To investigate if model performance can be improved beyond
the baseline, we trained several models usingGFB+F0 and
MOD + F0 features. The results from that study is shown



Fig. 3. ROC curves for detecting categorical emotions: happy, disgust, contempt, angry and surprise from neutral.

Table 4. Primitive emotion CCC from TC-LSTM models
trained with different acoustic features

Internal-eval MSP-eval
val aro dom val aro dom

MFB + F0 0.56 0.69 0.57 0.27 0.75 0.69
GFB + F0 0.58 0.70 0.58 0.32 0.74 0.65
MOD + F0 0.57 0.70 0.58 0.31 0.74 0.67
MOD + TV + F0 0.59 0.70 0.58 0.33 0.74 0.68

Table 5. Primitive emotion CCC from TC-LSTM models
and the relevant state-of-the-art

MSP-eval
val aro dom Params

CNN MFB [3] 0.25 0.74 0.66 800K
Best in [3]* 0.30 0.77 0.70 >1M
TC-LSTM MODTV + F0 0.33 0.74 0.68 100K
TC-LSTM MOD + TV + F0
+ TC-LSTM GFB + F0 0.34 0.77 0.69 200K

below in Table 3. Table 3 shows that the GFB + F0 and
MOD + F0 demonstrated comparable performance with re-
spect to the baseline MFB+F0 features, but with improved
(statistically significant) CCC for valence on the MSP-eval
sets. Table 4 shows the results obtained from the TC-LSTM
acoustic model, where it can be seen that the TC-LSTM over-
all performed better than the LSTM model. We observed
that the best result from our TC-LSTM model is better than a
comparableMFB-CNN model (multi-task learning) that was
evaluated on the same MSP eval set (shown in Table 5), and
was very close to the best performing (* in Table 5) system
that used more than 6K feature.

5.3. Application: Detection of Categorical Emotions from
their primitives
To investigate how primitive emotion decisions generalize to
categorical emotions, we investigated the task of detecting
happiness, disgust, contempt, anger and surprise versus neu-
tral, given the valence, arousal and dominance scores from
the MFB + F0 LSTM model. Figure 3 shows the ROC

curves for detecting the respective categorical emotions from
neutral, given the predictions (pred) from the MFB + F0
LSTM model and the true label. Table 6 presents the area
under the curve (AUC) for each of these cases and shows that
while arousal (pred) is a strong indicator for all the categories,
valence is useful for detecting happiness, dominance for dis-
gust, contempt and anger. ROC in Figure 3 shows that the
(true) valence is the best indicator for detecting happiness,
disgust, contempt and anger however (pred) valence shows
much worse performance compared to it; which motivates the
necessity to improve the detection of valence from speech.

Table 6. Primitive Emotion AUC from TC-LSTM models
trained with different acoustic features

AUC
Happy Disgust Contempt Anger Surprise

Val 0.36 0.48 0.49 0.52 0.36
Aro 0.34 0.33 0.30 0.19 0.22
Dom 0.39 0.35 0.30 0.21 0.26

6. CONCLUSION

We investigated a TC-LSTM model to detect primitive emo-
tions from speech, and demonstrated that it performed sig-
nificantly better in detecting valence compared to the state-
of-the-art reported in the literature for a publicly available
dataset. We observed thatMOD+TV +F0 features offered
the best performance for detecting valence, while MFB +
F0 features performed better for detecting arousal and dom-
inance. We demonstrated that frame-level filterbank energy
features can generate comparable performance to that of large
dimensional features typically used in the literature. We also
observed that simple score level fusion can improve overall
emotion detection performance. Finally, we observed that the
model generated primitive emotion scores are useful to detect
categorical emotions.
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