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Reports on Computer Systems Technology 

The Information Technology Laboratory (ITL) at the National Institute of Standards and 
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 
methods, reference data, proof of concept implementations, and technical analyses to advance 
the development and productive use of information technology. ITL’s responsibilities include the 
development of management, administrative, technical, and physical standards and guidelines for 
the cost-effective security and privacy of other than national security-related information in 
federal information systems. The Special Publication 800-series reports on ITL’s research, 
guidelines, and outreach efforts in information system security, and its collaborative activities 
with industry, government, and academic organizations. 

 

Abstract 

Application container technologies, also known as containers, are a form of operating system 
virtualization combined with application software packaging. Containers provide a portable, 
reusable, and automatable way to package and run applications. This publication explains the 
potential security concerns associated with the use of containers and provides recommendations 
for addressing these concerns. 
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Executive Summary 

Operating system (OS) virtualization provides a separate virtualized view of the OS to each 
application, thereby keeping each application isolated from all others on the server. Each 
application can only see and affect itself. Recently, OS virtualization has become increasingly 
popular due to advances in its ease of use and a greater focus on developer agility as a key 
benefit. Today’s OS virtualization technologies are primarily focused on providing a portable, 
reusable, and automatable way to package and run applications (apps). The terms application 
container or simply container are frequently used to refer to these technologies. 

The purpose of the document is to explain the security concerns associated with container 
technologies and make practical recommendations for addressing those concerns when planning 
for, implementing, and maintaining containers. Many of the recommendations are specific to a 
particular component or tier within the container technology architecture, which is depicted in 
Figure 1. 

Figure 1: Container Technology Architecture Tiers and Components 

Organizations should follow these recommendations to help ensure the security of their container 
technology implementations and usage: 

Tailor the organization’s operational culture and technical processes to support the new 
way of developing, running, and supporting applications made possible by containers. 

The introduction of container technologies might disrupt the existing culture and software 
development methodologies within the organization. Traditional development practices, patching 
techniques, and system upgrade processes might not directly apply to a containerized 
environment, and it is important that employees are willing to adapt to a new model. Staff should 
be encouraged to embrace the recommended practices for securely building and operating apps 
within containers, as covered in this guide, and the organization should be willing to rethink 
existing procedures to take advantage of containers. Education and training covering both the 
technology and the operational approach should be offered to anyone involved in the software 
development lifecycle. 
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Use container-specific host OSs instead of general-purpose ones to reduce attack surfaces. 

A container-specific host OS is a minimalist OS explicitly designed to only run containers, with 
all other services and functionality disabled, and with read-only file systems and other hardening 
practices employed. When using a container-specific host OS, attack surfaces are typically much 
smaller than they would be with a general-purpose host OS, so there are fewer opportunities to 
attack and compromise a container-specific host OS. Accordingly, whenever possible, 
organizations should use container-specific host OSs to reduce their risk. However, it is 
important to note that container-specific host OSs will still have vulnerabilities over time that 
require remediation. 

Only group containers with the same purpose, sensitivity, and threat posture on a single 
host OS kernel to allow for additional defense in depth. 

While most container platforms do an effective job of isolating containers from each other and 
from the host OS, it may be an unnecessary risk to run apps of different sensitivity levels 
together on the same host OS. Segmenting containers by purpose, sensitivity, and threat posture 
provides additional defense in depth. By grouping containers in this manner, organizations make 
it more difficult for an attacker who compromises one of the groups to expand that compromise 
to other groups. This increases the likelihood that compromises will be detected and contained 
and also ensures that any residual data, such as caches or local volumes mounted for temp files, 
stays within its security zone. 

In larger-scale environments with hundreds of hosts and thousands of containers, this grouping 
must be automated to be practical to operationalize. Fortunately, container technologies typically 
include some notion of being able to group apps together, and container security tools can use 
attributes like container names and labels to enforce security policies across them. 

Adopt container-specific vulnerability management tools and processes for images to 
prevent compromises. 

Traditional vulnerability management tools make many assumptions about host durability and 
app update mechanisms and frequencies that are fundamentally misaligned with a containerized 
model. For example, they often assume that a given server runs a consistent set of apps over 
time, but different application containers may actually be run on different servers at any given 
time based on resource availability. Further, traditional tools are often unable to detect 
vulnerabilities within containers, leading to a false sense of safety. Organizations should use 
tools that take the declarative, step-by-step build approach and immutable nature of containers 
and images into their design to provide more actionable and reliable results. 

These tools and processes should take both image software vulnerabilities and configuration 
settings into account. Organizations should adopt tools and processes to validate and enforce 
compliance with secure configuration best practices for images. This should include having 
centralized reporting and monitoring of the compliance state of each image, and preventing non-
compliant images from being run. 
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Consider using hardware-based countermeasures to provide a basis for trusted computing. 

Security should extend across all tiers of the container technology. The current way of 
accomplishing this is to base security on a hardware root of trust, such as the industry standard 
Trusted Platform Module (TPM). Within the hardware root of trust are stored measurements of 
the host’s firmware, software, and configuration data. Validating the current measurements 
against the stored measurements before booting the host provides assurance that the host can be 
trusted. The chain of trust rooted in hardware can be extended to the OS kernel and the OS 
components to enable cryptographic verification of boot mechanisms, system images, container 
runtimes, and container images. Trusted computing provides a secure way to build, run, 
orchestrate, and manage containers. 

Use container-aware runtime defense tools. 

Deploy and use a dedicated container security solution capable of preventing, detecting, and 
responding to threats aimed at containers during runtime. Traditional security solutions, such as 
intrusion prevention systems (IPSs) and web application firewalls (WAFs), often do not provide 
suitable protection for containers. They may not be able to operate at the scale of containers, 
manage the rate of change in a container environment, and have visibility into container activity. 
Utilize a container-native security solution that can monitor the container environment and 
provide precise detection of anomalous and malicious activity within it.  
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1 Introduction 

1.1 Purpose and Scope 

The purpose of the document is to explain the security concerns associated with application 
container technologies and make practical recommendations for addressing those concerns when 
planning for, implementing, and maintaining containers. Some aspects of containers may vary 
among technologies, but the recommendations in this document are intended to apply to most or 
all application container technologies.   

All forms of virtualization other than application containers, such as virtual machines, are 
outside the scope of this document. 

In addition to application container technologies, the term “container” is used to refer to concepts 
such as software that isolates enterprise data from personal data on mobile devices, and software 
that may be used to isolate applications from each other on desktop operating systems. While 
these may share some attributes with application container technologies, they are out of scope for 
this document. 

This document assumes readers are already familiar with securing the technologies supporting 
and interacting with application container technologies. These include the following:  

• The layers under application container technologies, including hardware, hypervisors, 
and operating systems; 

• The administrative tools that use the applications within the containers; and 
• The administrator endpoints used to manage the applications within the containers and 

the containers themselves. 

Appendix A contains pointers to resources with information on securing these technologies. 
Sections 3 and 4 offer additional information on security considerations for container-specific 
operating systems. All further discussion of securing the technologies listed above is out of scope 
for this document. 

1.2 Document Structure 

The remainder of this document is organized into the following sections and appendices:  

• Section 2 introduces containers, including their technical capabilities, technology 
architectures, and uses. 

• Section 3 explains the major risks for the core components of application container 
technologies. 

• Section 4 recommends countermeasures for the risks identified in Section 3. 
• Section 5 defines threat scenario examples for containers. 
• Section 6 presents actionable information for planning, implementing, operating, and 

maintaining container technologies. 
• Section 7 provides the conclusion for the document. 
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• Appendix A lists NIST resources for securing non-core components of container 
technologies. 

• Appendix B lists the NIST Special Publication 800-53 security controls and NIST 
Cybersecurity Framework subcategories that are most pertinent to application container 
technologies, explaining the relevancy of each. 

• Appendix C provides an acronym and abbreviation list for the document. 
• Appendix D presents a glossary of selected terms from the document. 
• Appendix E contains a list of references for the document. 
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2 Introduction to Application Containers  

This section provides an introduction to containers for server applications (apps). First, it defines 
the basic concepts for application virtualization and containers needed to understand the rest of 
the document. Next, this section explains how containers interact with the operating system they 
run on top of. The next portion of the section illustrates the overall architecture of container 
technologies, defining all the major components typically found in a container implementation 
and explaining the workflows between components. The last part of the section describes 
common uses for containers. 

2.1 Basic Concepts for Application Virtualization and Containers 

NIST Special Publication (SP) 800-125 [1] defines virtualization as “the simulation of the 
software and/or hardware upon which other software runs.” Virtualization has been in use for 
many years, but it is best known for enabling cloud computing. In cloud environments, hardware 
virtualization is used to run many instances of operating systems (OSs) on a single physical 
server while keeping each instance separate. This allows more efficient use of hardware and 
supports multi-tenancy.  

In hardware virtualization, each OS instance interacts with virtualized hardware. Another form of 
virtualization known as operating system virtualization has a similar concept; it provides 
multiple virtualized OSs above a single actual OS kernel. This approach is often called an OS 
container, and various implementations of OS containers have existed since the early 2000s, 
starting with Solaris Zone and FreeBSD jails.1 Support initially became available in Linux in 
2008 with the Linux Container (LXC) technology built into nearly all modern distributions. OS 
containers are different from the application containers that are the topic of this guide because 
OS containers are designed to provide an environment that behaves much like a normal OS in 
which multiple apps and services may co-exist. 

Recently, application virtualization has become increasingly popular due to advances in its ease 
of use and a greater focus on developer agility as a key benefit. In application virtualization, the 
same shared OS kernel is exposed virtually to multiple discrete apps. OS components keep each 
app instance isolated from all others on the server. In this case, each app sees only the OS and 
itself, and is isolated from other apps that may be running on this same OS kernel.   

The key difference between OS virtualization and application virtualization is that with 
application virtualization, each virtual instance typically runs only a single app. Today’s 
application virtualization technologies are primarily focused on providing a portable, reusable, 
and automatable way to package and run apps. The terms application container or simply 
container are frequently used to refer to these technologies. The term is meant as an analogy to 
shipping containers, which provide a standardized way of grouping disparate contents together 
while isolating them from each other. 

                                                 

1  For more information on the concept of jails, see https://www.freebsd.org/doc/handbook/jails.html.  

https://www.freebsd.org/doc/handbook/jails.html
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Unlike traditional app architectures, which often divide an app into a few tiers (e.g., web, app, 
and database) and have a server or VM for each tier, container architectures often have an app 
divided into many more components, each with a single well-defined function and typically 
running in its own container(s). Each app component runs in a separate container. In application 
container technologies, sets of containers that work together to compose an app are referred to as 
microservices. With this approach, app deployment is more flexible and scalable. Development 
is also simpler because functionality is more self-contained. However, there are many more 
objects to manage and secure, which may cause problems for app management and security tools 
and processes. 

Most application container technologies implement the concept of immutability. In other words, 
the containers themselves should be operated as stateless entities that are deployed but not 
changed.2 When a running container needs to be upgraded or have its contents changed, it is 
simply destroyed and replaced with a new container that has the updates. This enables 
developers and support engineers to make and push changes to apps at a much faster pace. 
Organizations may go from deploying a new version of their app every quarter, to deploying new 
components weekly or daily. Immutability is a fundamental operational difference between 
containers and hardware virtualization. Traditional VMs are typically run as stateful entities that 
are deployed, reconfigured, and upgraded throughout their life. Legacy security tools and 
processes often assume largely static operations and may need to be adjusted to adapt to the rate 
of change in containerized environments.  

The immutable nature of containers also has implications for data persistence. Rather than 
intermingling the app with the data it uses, containers stress the concept of isolation. Data 
persistence should be achieved not through simple writes to the container root file system, but 
instead by using external, persistent data stores such as databases or cluster-aware persistent 
volumes. The data containers use should be stored outside of the containers themselves so that 
when the next version of an app replaces the containers running the existing version, all data is 
still available to the new version. 

Modern container technologies have largely emerged along with the adoption of development 
and operations (DevOps) practices that seek to increase the integration between building and 
running apps, emphasizing close coordination between development and operational teams.3 The 
portable and declarative nature of containers is particularly well suited to these practices because 
they allow an organization to have great consistency between development, test, and production 
environments. Organizations often utilize continuous integration processes to put their apps into 
containers directly in the build process itself, such that from the very beginning of the app’s 
lifecycle, there is guaranteed consistency of its runtime environment. Container images—
packages containing the files required to run containers—are typically designed to be portable 
across machines and environments, so that an image created in a development lab can be easily 
moved to a test lab for evaluation, then copied into a production environment to run without 
needing to make any modifications. The downside of this is that the security tools and processes 
                                                 

2  Note that while containers make immutability practical and realistic, they do not require it, so organizations need to adapt 
their operational practices to take advantage of it. 

3  This document refers to tasks performed by DevOps personas. The references to these personas are focused on the types of 
job tasks being performed, not on strict titles or team organizational structures. 
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used to protect containers should not make assumptions about specific cloud providers, host OSs, 
network topologies, or other aspects of the container runtime environment which may frequently 
change. Even more critically, security should be consistent across all these environments and 
throughout the app lifecycle from development to test to production. 

Recently, projects such as Docker [2] and rkt [3] have provided additional functionality designed 
to make OS component isolation features easier to use and scale. Container technologies are also 
available on the Windows platform beginning with Windows Server 2016. The fundamental 
architecture of all these implementations is consistent enough so that this document can discuss 
containers in detail while remaining implementation agnostic. 

2.2 Containers and the Host Operating System 

Explaining the deployment of apps within containers is made easier by comparing it with the 
deployment of apps within virtual machines (VMs) from hardware virtualization technologies, 
which many readers are already familiar with. Figure 2 shows the VM deployment on the left, a 
container deployment without VMs (installed on “bare metal”) in the middle, and a container 
deployment that runs within a VM on the right. 

 
Figure 2: Virtual Machine and Container Deployments 

Both VMs and containers allow multiple apps to share the same physical infrastructure, but they 
use different methods of separation. VMs use a hypervisor that provides hardware-level isolation 
of resources across VMs. Each VM sees its own virtual hardware and includes a complete guest 
OS in addition to the app and its data. VMs allow different OSs, such as Linux and Windows, to 
share the same physical hardware. 

With containers, multiple apps share the same OS kernel instance but are segregated from each 
other. The OS kernel is part of what is called the host operating system. The host OS sits below 
the containers and provides OS capabilities to them. Containers are OS-family specific; a Linux 
host can only run containers built for Linux, and a Windows host can only run Windows 
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containers. Also, a container built for one OS family should run on any recent OS from that 
family. 

There are two general categories of host OSs used for running containers. General-purpose OSs 
like Red Hat Enterprise Linux, Ubuntu, and Windows Server can be used for running many 
kinds of apps and can have container-specific functionality added to them. Container-specific 
OSs, like CoreOS Container Linux [4], Project Atomic [5], and Google Container-Optimized OS 
[6] are minimalistic OSs explicitly designed to only run containers. They typically do not come 
with package managers, they have only a subset of the core administration tools, and they 
actively discourage running apps outside containers. Often, a container-specific OS uses a read-
only file system design to reduce the likelihood of an attacker being able to persist data within it, 
and it also utilizes a simplified upgrade process since there is little concern around app 
compatibility. 

Every host OS used for running containers has binaries that establish and maintain the 
environment for each container, also known as the container runtime. The container runtime 
coordinates multiple OS components that isolate resources and resource usage so that each 
container sees its own dedicated view of the OS and is isolated from other containers running 
concurrently. Effectively, the containers and the host OS interact through the container runtime. 
The container runtime also provides management tools and application programming interfaces 
(APIs) to allow DevOps personnel and others to specify how to run containers on a given host. 
The runtime eliminates the need to manually create all the necessary configurations and 
simplifies the process of starting, stopping, and operating containers. Examples of runtimes 
include Docker [2], rkt [3], and the Open Container Initiative Daemon [7]. 

Examples of technical capabilities the container runtime ensures the host OS provides include 
the following: 

• Namespace isolation limits which resources a container may interact with. This includes 
file systems, network interfaces, interprocess communications, host names, user 
information, and processes. Namespace isolation ensures that apps and processes inside a 
container only see the physical and virtual resources allocated to that container. For 
example, if you run ‘ps –A’ inside a container running Apache on a host with many other 
containers running other apps, you would only see httpd listed in the results. Namespace 
isolation provides each container with its own networking stack, including unique 
interfaces and IP addresses. Containers on Linux use technologies like masked process 
identities to achieve namespace isolation, whereas on Windows, object namespaces are 
used. 

• Resource allocation limits how much of a host’s resources a given container can 
consume. For example, if your host OS has 10 gigabytes (GB) of total memory, you may 
wish to allocate 1 GB each to nine separate containers. No container should be able to 
interfere with the operations of another container, so resource allocation ensures that each 
container can only utilize the amount of resources assigned to it. On Linux, this is 
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accomplished primarily with control groups (cgroups)4, whereas on Windows job objects 
serve a similar purpose. 

• Filesystem virtualization allows multiple containers to share the same physical storage 
without the ability to access or alter the storage of other containers. While arguably 
similar to namespace isolation, filesystem virtualization is called out separately because it 
also often involves optimizations to ensure that containers are efficiently using the host’s 
storage through techniques like copy-on-write. For example, if multiple containers using 
the same image are running Apache on a single host, filesystem virtualization ensures 
that there is only one copy of the httpd binary stored on disk. If one of the containers 
modifies files within itself, only the specifically changed bits will be written to disk, and 
those changes will only be visible to the container that executed them. On Linux, these 
capabilities are provided by technologies like the Advanced Multi-Layered Unification 
Filesystem (AUFS), whereas on Windows they are an extension of the NT File System 
(NTFS).  

The technical capabilities of containers vary by host OS family. Containers are fundamentally a 
mechanism to give each app a unique view of a single OS, so the tools for achieving this 
separation are largely OS family-dependent. For example, the methods used to isolate processes 
from each other differ between Linux and Windows. However, while the underlying 
implementation may be different, commonly used container runtimes provide a common 
interface format that largely abstracts these differences from users. 

While containers provide a strong degree of isolation, they do not offer as clear and concrete of a 
security boundary as a VM. Because containers share the same kernel and can be run with 
varying capabilities and privileges on a host, the degree of segmentation between them is far less 
than that provided to VMs by a hypervisor. Thus, carelessly configured environments can result 
in containers having the ability to interact with each other and the host far more easily and 
directly than multiple VMs on the same host. 

Although containers are sometimes thought of as the next phase of virtualization, surpassing 
hardware virtualization, the reality for most organizations is less about revolution than evolution. 
Containers and hardware virtualization not only can, but very frequently do, coexist well and 
actually enhance each other’s capabilities. VMs provide many benefits, such as strong isolation, 
OS automation, and a wide and deep ecosystem of solutions. Organizations do not need to make 
a choice between containers and VMs. Instead, organizations can continue to use VMs to deploy, 
partition, and manage their hardware, while using containers to package their apps and utilize 
each VM more efficiently. 

2.3 Container Technology Architecture 

Figure 3 shows the five tiers of the container technology architecture: 

                                                 

4  cgroups are collections of processes that can be managed independently, giving the kernel the software-based ability to 
meter subsystems such as memory, processor usage, and disk I/O. Administrators can control these subsystems either 
manually or programmatically. 
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1. Developer systems (generate images and send them to testing and accreditation) 
2. Testing and accreditation systems (validate and verify the contents of images, sign 

images, and send images to the registry) 
3. Registries (store images and distribute images to the orchestrator upon request) 
4. Orchestrators (convert images into containers and deploy containers to hosts) 
5. Hosts (run and stop containers as directed by the orchestrator) 

Although there are many administrator system personas involved in the overall process, the 
figure depicts only the administrator systems for the internal registry and the orchestrator. 

The systems in gray (developer systems, testing and accreditation system, and administrator 
systems) are outside the scope of the container technology architecture, but they do have 
important interactions with it. In most organizations that use containers, the development and test 
environments also leverage containers, and this consistency is one of the key benefits of using 
containers. This document does not focus on systems in these environments because the 
recommendations for securing them are largely the same as those for the production 
environment. The systems in green (internal registry, external registry, and orchestrator) are core 
components of a container technology architecture. Finally, the systems in orange (hosts with 
containers) are where the containers are used. 

Another way to understand the container technology architecture is to consider the container 
lifecycle phases, which are depicted at the bottom of Figure 3. The three phases are discussed in 
more detail below. 

Because organizations are typically building and deploying many different apps at once, these 
lifecycle phases often occur concurrently within the same organization and should not be seen as 
progressive stages of maturity. Instead, think of them as cycles in an engine that is continuously 
running. In this metaphor, each app is a cylinder within the engine, and different apps may be at 
different phases of this lifecycle at the same time.    

Figure 3: Container Technology Architecture Tiers, Components, and Lifecycle Phases 
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2.3.1 Image Creation, Testing, and Accreditation 

In the first phase of the container lifecycle, an app’s components are built and placed into an 
image (or perhaps into multiple images). An image is a package that contains all the files 
required to run a container. For example, an image to run Apache would include the httpd binary, 
along with associated libraries and configuration files. An image should only include the 
executables and libraries required by the app itself; all other OS functionality is provided by the 
OS kernel within the underlying host OS. Images often use techniques like layering and copy-on-
write (in which shared master images are read only and changes are recorded to separate files) to 
minimize their size on disk and improve operational efficiency. 

Because images are built in layers, the underlying layer upon which all other components are 
added is often called the base layer. Base layers are typically minimalistic distributions of 
common OSs like Ubuntu and Windows Nano Server with the OS kernel omitted. Users begin 
building their full images by starting with one of these base layers, then adding application 
frameworks and their own custom code to develop a fully deployable image of their unique app. 
Container runtimes support using images from within the same OS family, even if the specific 
host OS version is dissimilar. For example, a Red Hat host running Docker can run images 
created on any Linux base layer, such as Alpine or Ubuntu. However, it cannot run images 
created with a Windows base layer. 

The image creation process is managed by developers responsible for packaging an app for 
handoff to testing. Image creation typically uses build management and automation tools, such as 
Jenkins [8] and TeamCity [9], to assist with what is called the “continuous integration” process. 
These tools take the various libraries, binaries, and other components of an app, perform testing 
on them, and then assemble images out of them based on the developer-created manifest that 
describes how to build an image for the app.  

Most container technologies have a declarative way of describing the components and 
requirements for the app. For example, an image for a web server would include not only the 
executables for the web server, but also some machine-parseable data to describe how the web 
server should run, such as the ports it listens on or the configuration parameters it uses. 

After image creation, organizations typically perform testing and accreditation. For example, test 
automation tools and personnel would use the images built to validate the functionality of the 
final form application, and security teams would perform accreditation on these same images. 
The consistency of building, testing, and accrediting exactly the same artifacts for an app is one 
of the key operational and security benefits of containers. 

2.3.2 Image Storage and Retrieval 

Images are typically stored in central locations to make it easy to control, share, find, and reuse 
them across hosts. Registries are services that allow developers to easily store images as they are 
created, tag and catalog images for identification and version control to aid in discovery and 
reuse, and find and download images that others have created. Registries may be self-hosted or 
consumed as a service. Examples of registries include Amazon EC2 Container Registry [10], 
Docker Hub [11], Docker Trusted Registry [12], and Quay Container Registry [13]. 
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Registries provide APIs that enable automating common image-related tasks. For example, 
organizations may have triggers in the image creation phase that automatically push images to a 
registry once tests pass. The registry may have further triggers that automate the deployment of 
new images once they have been added. This automation enables faster iteration on projects with 
more consistent results. 

Once stored in a registry, images can be easily pulled and then run by DevOps personas across 
any environment in which they run containers. This is another example of the portability benefits 
of containers; image creation may occur in a public cloud provider, which pushes an image to a 
registry hosted in a private cloud, which is then used to distribute images for running the app in a 
third location.   

2.3.3 Container Deployment and Management 

Tools known as orchestrators enable DevOps personas or automation working on their behalf to 
pull images from registries, deploy those images into containers, and manage the running 
containers. This deployment process is what actually results in a usable version of the app, 
running and ready to respond to requests. When an image is deployed into a container, the image 
itself is not changed, but instead a copy of it is placed within the container and transitioned from 
being a dormant set of app code to a running instance of the app. Examples of orchestrators are 
Kubernetes [14], Mesos [15], and Docker Swarm [16].  

Note that a small, simple container implementation could omit a full-fledged orchestrator. 
Orchestrators may also be circumvented or unnecessary in other circumstances. For example, a 
host could directly contact a registry in order to pull an image from it for a container runtime. To 
simplify the discussions in this publication, the use of an orchestrator will be assumed.  

The abstraction provided by an orchestrator allows a DevOps persona to simply specify how 
many containers need to be running a given image and what resources, such as memory, 
processing, and disk need to be allocated to each. The orchestrator knows the state of each host 
within the cluster, including what resources are available for each host, and determines which 
containers will run on which hosts. The orchestrator then pulls the required images from the 
registry and runs them as containers with the designated resources. 

Orchestration tools are also responsible for monitoring container resource consumption, job 
execution, and machine health across hosts. Depending on its configuration, an orchestrator may 
automatically restart containers on new hosts if the hosts they were initially running on failed. 
Many orchestrators enable cross-host container networking and service discovery. Most 
orchestrators also include a software-defined networking (SDN) component known as an overlay 
network that can be used to isolate communication between apps that share the same physical 
network.  

When apps in containers need to be updated, the existing containers are not changed, but rather 
they are destroyed and new containers created from updated images. This is a key operational 
difference with containers: the baseline software from the initial deployment should not change 
over time, and updates are done by replacing the entire image at once. This approach has 
significant potential security benefits because it enables organizations to build, test, validate, and 
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deploy exactly the same software in exactly the same configuration in each phase. As updates are 
made to apps, organizations can ensure that the most recent versions are used, typically by 
leveraging orchestrators. Orchestrators are usually configured to pull the most up-to-date version 
of an image from the registry so that the app is always up-to-date. This “continuous delivery” 
automation enables developers to simply build a new version of the image for their app, test the 
image, push it to the registry, and then rely on the automation tools to deploy it to the target 
environment.  

This means that all vulnerability management, including patches and configuration settings, is 
typically taken care of by the developer when building a new image version. With containers, 
developers are largely responsible for the security of apps and images instead of the operations 
team. This change in responsibilities often requires much greater coordination and cooperation 
among personnel than was previously necessary. Organizations adopting containers should 
ensure that clear process flows and team responsibilities are established for each stakeholder 
group. 

Container management includes security management and monitoring. However, security 
controls designed for non-container environments are often not well suited for use with 
containers. For example, consider security controls that take IP addresses into account. This 
works well for VMs and bare metal servers with static IP addresses that remain the same for 
months or years. Conversely, containers are typically allocated IP addresses by orchestrators, and 
because containers are created and destroyed much more frequently than VMs, these IP 
addresses change frequently over time as well. This makes it difficult or impossible to protect 
containers using security techniques that rely on static IP addresses, such as firewall rulesets 
filtering traffic based on IP address. Additionally, a container network can include 
communications between containers on the same node, across different nodes, and even across 
clouds. 

2.4 Container Uses 

Like any other technology, containers are not a panacea. They are a valuable tool for many 
scenarios, but are not necessarily the best choice for every scenario. For example, an 
organization with a large base of legacy off-the-shelf software is unlikely to be able to take 
advantage of containers for running most of that software since the vendors may not support it. 
However, most organizations will have multiple valuable uses for containers. Examples include: 

• Agile development, where apps are frequently updated and deployed. The portability and 
declarative nature of containers makes these frequent updates more efficient and easier to 
test. This allows organizations to accelerate their innovation and deliver software more 
quickly. This also allows vulnerabilities in app code to be fixed and the updated software 
tested and deployed much faster. 

• Environmental consistency and compartmentalization, where developers can have 
identical yet separate environments for building, testing, and running the app. Containers 
give developers the ability to run the entirety of an exact copy of a production app locally 
on a development laptop system, limiting the need for coordination and sharing of testing 
environments as well as eliminating the hassle of stale testing environments. 



NIST SP 800-190  APPLICATION CONTAINER SECURITY GUIDE 
    

12 

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-190 

 

• ‘Scale out’ scenarios, where an app may need to have many new instances deployed or 
decommissioned quickly depending on the load at a given point in time. The 
immutability of containers makes it easier to reliably scale out instances, knowing that 
each instance is exactly like all the others. Further, because containers are typically 
stateless, it is easier to decommission them when they are no longer needed. 

• Cloud-native apps, where developers can build for a microservices architecture from the 
beginning, ensuring more efficient iteration of the app and simplified deployment. 

Containers provide additional benefits; for example, they can increase the effectiveness of build 
pipelines due to the immutable nature of container images. Containers shift the time and location 
of production code installation. In non-container systems, app installation happens in production 
(i.e., at server runtime), typically by running hand-crafted scripts that manage installation of app 
code (e.g., programming language runtime, dependent third-party libraries, init scripts, and OS 
tools) on servers. This means that any tests running in a pre-production build pipeline (and on 
developers’ workstations) are not testing the actual production artifact, but a best-guess 
approximation contained in the build system. This approximation of production tends to drift 
from production over time, especially if the teams managing production and the build system are 
different. This scenario is the embodiment of the “it works on my machine” problem. 

With container technologies, the build system installs the app within the image it creates (i.e., at 
compile-time). The image is an immutable snapshot of all userspace requirements of the app 
(i.e., programming language runtime, dependent third-party libraries, init scripts, and OS tools). 
In production the container image constructed by the build system is simply downloaded and 
run. This solves the “works on my machine” problem since the developer, build system, and 
production all run the same immutable artifact. 

Modern container technologies often also emphasize reuse, such that a container image created 
by one developer can be easily shared and reused by other developers, either within the same 
organization or among other organizations. Registry services provide centralized image sharing 
and discovery services to make it easy for developers to find and reuse software created by 
others. This ease of use is also leading many popular software vendors and projects to use 
containers as a way to make it easy for customers to find and quickly run their software. For 
example, rather than directly installing an app like MongoDB on the host OS, a user can simply 
run a container image of MongoDB. Further, since the container runtime isolates containers from 
one another and the host OS, these apps can be run more safely and reliably, and users do not 
have to worry about them disturbing the underlying host OS. 
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3 Major Risks for Core Components of Container Technologies  

This section identifies and analyzes major risks for the core components of container 
technologies—images, registries, orchestrators, containers, and host OSs. Because the analysis 
looks at core components only, it is applicable to most container deployments regardless of 
container technology, host OS platform, or location (public cloud, private cloud, etc.) Two types 
of risks are considered: 

1. Compromise of an image or container. This risk was evaluated using the data-centric 
system threat modeling approach described in NIST SP 800-154 [17]. The primary “data” 
to protect is the images and containers, which may hold app files, data files, etc. The 
secondary data to protect is container data within shared host resources such as memory, 
storage, and network interfaces. 

2. Misuse of a container to attack other containers, the host OS, other hosts, etc. 

All other risks involving the core components, as well as risks involving non-core container 
technology components, including developer systems, testing and accreditation systems, 
administrator systems, and host hardware and virtual machine managers, are outside the scope of 
this document. Appendix A contains pointers to general references for securing non-core 
container technology components.  

3.1 Image Risks 

3.1.1 Image vulnerabilities 

Because images are effectively static archive files that include all the components used to run a 
given app, components within an image may be missing critical security updates or are otherwise 
outdated. An image created with fully up-to-date components may be free of known 
vulnerabilities for days or weeks after its creation, but at some time vulnerabilities will be 
discovered in one or more image components, and thus the image will no longer be up-to-date. 

Unlike traditional operational patterns in which deployed software is updated ‘in the field’ on the 
hosts it runs on, with containers these updates must be made upstream in the images themselves, 
which are then redeployed. Thus, a common risk in containerized environments is deployed 
containers having vulnerabilities because the version of the image used to generate the containers 
has vulnerabilities.  

3.1.2 Image configuration defects 

In addition to software defects, images may also have configuration defects. For example, an 
image may not be configured with a specific user account to “run as” and thus run with greater 
privileges than needed. As another example, an image may include an SSH daemon, which 
exposes the container to unnecessary network risk. Much like in a traditional server or VM, 
where a poor configuration can still expose a fully up-to-date system to attack, so too can a 
poorly configured image increase risk even if all the included components are up-to-date.  
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3.1.3 Embedded malware 

Because images are just collections of files packaged together, malicious files could be included 
intentionally or inadvertently within them. Such malware would have the same capabilities as 
any other component within the image and thus could be used to attack other containers or hosts 
within the environment. A possible source of embedded malware is the use of base layers and 
other images provided by third parties of which the full provenance is not known. 

3.1.4 Embedded clear text secrets 

Many apps require secrets to enable secure communication between components. For example, a 
web app may need a username and password to connect to a backend database. Other examples 
of embedded secrets include connection strings, SSH private keys, and X.509 private keys. 
When an app is packaged into an image, these secrets can be embedded directly into the image 
file system. However, this practice creates a security risk because anyone with access to the 
image can easily parse it to learn these secrets.  

3.1.5 Use of untrusted images 

One of the most common high-risk scenarios in any environment is the execution of untrusted 
software. The portability and ease of reuse of containers increase the temptation for teams to run 
images from external sources that may not be well validated or trustworthy. For example, when 
troubleshooting a problem with a web app, a user may find another version of that app available 
in an image provided by a third party. Using this externally provided image results in the same 
types of risks that external software traditionally has, such as introducing malware, leaking data, 
or including components with vulnerabilities. 

3.2 Registry Risks 

3.2.1 Insecure connections to registries 

Images often contain sensitive components like an organization’s proprietary software and 
embedded secrets. If connections to registries are performed over insecure channels, the contents 
of images are subject to the same confidentiality risks as any other data transmitted in the clear. 
There is also an increased risk of man-in-the-middle attacks that could intercept network traffic 
intended for registries and steal developer or administrator credentials within that traffic, provide 
fraudulent or outdated images to orchestrators, etc. 

3.2.2 Stale images in registries 

Because registries are typically the source location for all the images an organization deploys, 
over time the set of images they store can include many vulnerable, out-of-date versions. While 
these vulnerable images do not directly pose a threat simply by being stored in the registry, they 
increase the likelihood of accidental deployment of a known-vulnerable version. 

3.2.3 Insufficient authentication and authorization restrictions 

Because registries may contain images used to run sensitive or proprietary apps and to access 
sensitive data, insufficient authentication and authorization requirements can lead to intellectual 
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property loss and expose significant technical details about an app to an attacker. Even more 
critically, because registries are typically trusted as a source of valid, approved software, 
compromise of a registry can potentially lead to compromise of downstream containers and 
hosts. 

3.3 Orchestrator Risks 

3.3.1 Unbounded administrative access 

Historically, many orchestrators were designed with the assumption that all users interacting 
with them would be administrators and those administrators should have environment-wide 
control. However, in many cases, a single orchestrator may run many different apps, each 
managed by different teams, and with different sensitivity levels. If the access provided to users 
and groups is not scoped to their specific needs, a malicious or careless user could affect or 
subvert the operation of other containers managed by the orchestrator. 

3.3.2 Unauthorized access  

Orchestrators often include their own authentication directory service, which may be separate 
from the typical directories already in use within an organization. This can lead to weaker 
account management practices and ‘orphaned’ accounts in the orchestrator because these 
systems are less rigorously managed. Because many of these accounts are highly privileged 
within the orchestrator, compromise of them can lead to systemwide compromise. 

Containers typically use data storage volumes that are managed by the orchestration tool and are 
not host specific. Because a container may run on any given node within a cluster, the data 
required by the app within the container must be available to the container regardless of which 
host it is running on. At the same time, many organizations manage data that must be encrypted 
at rest to prevent unauthorized access. 

3.3.3 Poorly separated inter-container network traffic 

In most containerized environments, traffic between individual nodes is routed over a virtual 
overlay network. This overlay network is typically managed by the orchestrator and is often 
opaque to existing network security and management tools. For example, instead of seeing 
database queries being sent from a web server container to a database container on another host, 
traditional network filters would only see encrypted packets flowing between two hosts, with no 
visibility into the actual container endpoints, nor the traffic being sent. Although an encrypted 
overlay network provides many operational and security benefits, it can also create a security 
‘blindness’ scenario in which organizations are unable to effectively monitor traffic within their 
own networks.  

Potentially even more critical is the risk of traffic from different apps sharing the same virtual 
networks. If apps of different sensitivity levels, such as a public-facing web site and an internal 
treasury management app, are using the same virtual network, sensitive internal apps may be 
exposed to greater risk from network attack. For example, if the public-facing web site is 
compromised, attackers may be able to use shared networks to attack the treasury app. 
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3.3.4 Mixing of workload sensitivity levels 

Orchestrators are typically focused primarily on driving the scale and density of workloads. This 
means that, by default, they can place workloads of differing sensitivity levels on the same host.  
For example, in a default configuration, an orchestrator may place a container running a public-
facing web server on the same host as one processing sensitive financial data, simply because 
that host happens to have the most available resources at the time of deployment. In the case of a 
critical vulnerability in the web server, this can put the container processing sensitive financial 
data at significantly greater risk of compromise. 

3.3.5 Orchestrator node trust 

Maintenance of trust between the nodes in the environment requires special care. The 
orchestrator is the most foundational node. Weak orchestrator configurations can expose the 
orchestrator and all other container technology components to increased risk. Examples of 
possible consequences include: 

• Unauthorized hosts joining the cluster and running containers 
• The compromise of a single cluster host implying compromise of the entire cluster—for 

example, if the same key pairs used for authentication are shared across all nodes 
• Communications between the orchestrator and DevOps personnel, administrators, and 

hosts being unencrypted and unauthenticated 

3.4 Container Risks 

3.4.1 Vulnerabilities within the runtime software 

While relatively uncommon, vulnerabilities within the runtime software are particularly 
dangerous if they allow ‘container escape’ scenarios in which malicious software can attack 
resources in other containers and the host OS itself. An attacker may also be able to exploit 
vulnerabilities to compromise the runtime software itself, and then alter that software so it allows 
the attacker to access other containers, monitor container-to-container communications, etc. 

3.4.2 Unbounded network access from containers 

By default in most container runtimes, individual containers are able to access each other and the 
host OS over the network. If a container is compromised and acting maliciously, allowing this 
network traffic may expose other resources in the environment to risk. For example, a 
compromised container may be used to scan the network it is connected to in order to find other 
weaknesses for an attacker to exploit. This risk is related to that from poorly separated virtual 
networks, as discussed in Section 3.3.3, but different because it is focused more on flows from 
containers to any outbound destination, not on app “cross talk” scenarios. 

Egress network access is more complex to manage in a containerized environment because so 
much of the connection is virtualized between containers. Thus, traffic from one container to 
another may appear simply as encapsulated packets on the network without directly indicating 
the ultimate source, destination, or payload. Tools and operational processes that are not 
container aware are not able to inspect this traffic or determine whether it represents a threat. 
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3.4.3 Insecure container runtime configurations 

Container runtimes typically expose many configurable options to administrators. Setting them 
improperly can lower the relative security of the system. For example, on Linux container hosts, 
the set of allowed system calls is often limited by default to only those required for safe 
operation of containers. If this list is widened, it may expose containers and the host OS to 
increased risk from a compromised container. Similarly, if a container is run in privileged mode, 
it has access to all the devices on the host, thus allowing it to essentially act as part of the host 
OS and impact all other containers running on it. 

Another example of an insecure runtime configuration is allowing containers to mount sensitive 
directories on the host. Containers should rarely make changes to the host OS file system and 
should almost never make changes to locations that control the basic functionality of the host OS 
(e.g., /boot or /etc for Linux containers, C:\Windows for Windows containers). If a compromised 
container is allowed to make changes to these paths, it could be used to elevate privileges and 
attack the host itself as well as other containers running on the host.  

3.4.4 App vulnerabilities 

Even when organizations are taking the precautions recommended in this guide, containers may 
still be compromised due to flaws in the apps they run. This is not a problem with containers 
themselves, but instead is just the manifestation of typical software flaws within a container 
environment. For example, a containerized web app may be vulnerable to cross-site scripting 
vulnerabilities, and a database front end container may be subject to Structured Query Language 
(SQL) injection. When a container is compromised, it can be misused in many ways, such as 
granting unauthorized access to sensitive information or enabling attacks against other containers 
or the host OS. 

3.4.5 Rogue containers 

Rogue containers are unplanned or unsanctioned containers in an environment. This can be a 
common occurrence, especially in development environments, where app developers may launch 
containers as a means of testing their code. If these containers are not put through the rigors of 
vulnerability scanning and proper configuration, they may be more susceptible to exploits. 
Rogue containers therefore pose additional risk to the organization, especially when they persist 
in the environment without the awareness of development teams and security administrators. 

3.5 Host OS Risks 

3.5.1 Large attack surface  

Every host OS has an attack surface, which is the collection of all ways attackers can attempt to 
access and exploit the host OS’s vulnerabilities. For example, any network-accessible service 
provides a potential entry point for attackers, adding to the attack surface. The larger the attack 
surface is, the better the odds are that an attacker can find and access a vulnerability, leading to a 
compromise of the host OS and the containers running on top of it. 
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3.5.2 Shared kernel 

Container-specific OSs have a much smaller attack surface than that of general-purpose OSs. For 
example, they do not contain libraries and package managers that enable a general-purpose OS to 
directly run database and web server apps. However, although containers provide strong 
software-level isolation of resources, the use of a shared kernel invariably results in a larger 
inter-object attack surface than seen with hypervisors, even for container-specific OSs. In other 
words, the level of isolation provided by container runtimes is not as high as that provided by 
hypervisors. 

3.5.3 Host OS component vulnerabilities 

All host OSs, even container-specific ones, provide foundational system components—for 
example, the cryptographic libraries used to authenticate remote connections and the kernel 
primitives used for general process invocation and management. Like any other software, these 
components can have vulnerabilities and, because they exist low in the container technology 
architecture, they can impact all the containers and apps that run on these hosts. 

3.5.4 Improper user access rights 

Container-specific OSs are typically not optimized to support multiuser scenarios since 
interactive user logon should be rare. Organizations are exposed to risk when users log on 
directly to hosts to manage containers, rather than going through an orchestration layer. Direct 
management enables wide-ranging changes to the system and all containers on it, and can 
potentially enable a user that only needs to manage a specific app’s containers to impact many 
others. 

3.5.5 Host OS file system tampering 

Insecure container configurations can expose host volumes to greater risk of file tampering. For 
example, if a container is allowed to mount sensitive directories on the host OS, that container 
can then change files in those directories. These changes could impact the stability and security 
of the host and all other containers running on it. 
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4 Countermeasures for Major Risks 

This section recommends countermeasures for the major risks identified in Section 3. 

4.1 Image Countermeasures 

4.1.1 Image vulnerabilities 

There is a need for container technology-specific vulnerability management tools and processes. 
Traditional vulnerability management tools make many assumptions about host durability and 
app update mechanisms and frequencies that are fundamentally misaligned with a containerized 
model. These tools are often unable to detect vulnerabilities within containers, leading to a false 
sense of safety.  

Organizations should use tools that take the pipeline-based build approach and immutable nature 
of containers and images into their design to provide more actionable and reliable results. Key 
aspects of effective tools and processes include: 

1. Integration with the entire lifecycle of images, from the beginning of the build process, to 
whatever registries the organization is using, to runtime. 

2. Visibility into vulnerabilities at all layers of the image, not just the base layer of the 
image but also application frameworks and custom software the organization is using.  
Visibility should be centralized across the organization and provide flexible reporting and 
monitoring views aligned with organizations’ business processes. 

3. Policy-driven enforcement; organizations should be able to create “quality gates” at each 
stage of the build and deployment process to ensure that only images that meet the 
organization’s vulnerability and configuration policies are allowed to progress. For 
example, organizations should be able to configure a rule in the build process to prevent 
the progression of images that include vulnerabilities with Common Vulnerability 
Scoring System (CVSS) [18] ratings above a selected threshold. 

4.1.2 Image configuration defects 

Organizations should adopt tools and processes to validate and enforce compliance with secure 
configuration best practices. For example, images should be configured to run as non-privileged 
users. Tools and processes that should be adopted include: 

1. Validation of image configuration settings, including vendor recommendations and third-
party best practices. 

2. Ongoing, continuously updated, centralized reporting and monitoring of image 
compliance state to identify weaknesses and risks at the organizational level. 

3. Enforcement of compliance requirements by optionally preventing the running of non-
compliant images. 

4. Use of base layers from trusted sources only, frequent updates of base layers, and 
selection of base layers from minimalistic technologies like Alpine Linux and Windows 
Nano Server to reduce attack surface areas. 
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A final recommendation for image configuration is that SSH and other remote administration 
tools designed to provide remote shells to hosts should never be enabled within containers. 
Containers should be run in an immutable manner to derive the greatest security benefit from 
their use. Enabling remote access to them via these tools implies a degree of change that violates 
this principle and exposes them to greater risk of network-based attack. Instead, all remote 
management of containers should be done through the container runtime APIs, which may be 
accessed via orchestration tools, or by creating remote shell sessions to the host on which the 
container is running. 

4.1.3 Embedded malware 

Organizations should continuously monitor all images for embedded malware. The monitoring 
processes should include the use of malware signature sets and behavioral detection heuristics 
based largely on actual “in the wild” attacks. 

4.1.4 Embedded clear text secrets 

Secrets should be stored outside of images and provided dynamically at runtime as needed. Most 
orchestrators, such as Docker Swarm and Kubernetes, include native management of secrets. 
These orchestrators not only provide secure storage of secrets and ‘just in time’ injection to 
containers, but also make it much simpler to integrate secret management into the build and 
deployment processes. For example, an organization could use these tools to securely provision 
the database connection string into a web application container. The orchestrator can ensure that 
only the web application container had access to this secret, that it is not persisted to disk, and 
that anytime the web app is deployed, the secret is provisioned into it.   

Organizations may also integrate their container deployments with existing enterprise secret 
management systems that are already in use for storing secrets in non-container environments.  
These tools typically provide APIs to retrieve secrets securely as containers are deployed, which 
eliminates the need to persist them within images. 

Regardless of the tool chosen, organizations should ensure that secrets are only provided to the 
specific containers that require them, based on a pre-defined and administrator-controlled setting, 
and that secrets are always encrypted at rest and in transit using Federal Information Processing 
Standard (FIPS) 140 approved cryptographic algorithms5 contained in validated cryptographic 
modules. 

4.1.5 Use of untrusted images 

Organizations should maintain a set of trusted images and registries and ensure that only images 
from this set are allowed to run in their environment, thus mitigating the risk of untrusted or 
malicious components being deployed. 

To mitigate these risks, organizations should take a multilayered approach that includes: 

                                                 

5  For more information on NIST-validated cryptographic implementations, see the Cryptographic Module Validation Program 
(CMVP) page at https://csrc.nist.gov/groups/STM/cmvp/. 

https://csrc.nist.gov/groups/STM/cmvp/
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• Capability to centrally control exactly what images and registries are trusted in their 
environment; 

• Discrete identification of each image by cryptographic signature, using a NIST-validated 
implementation6; 

• Enforcement to ensure that all hosts in the environment only run images from these 
approved lists;  

• Validation of image signatures before image execution to ensure images are from trusted 
sources and have not been tampered with; and 

• Ongoing monitoring and maintenance of these repositories to ensure images within them 
are maintained and updated as vulnerabilities and configuration requirements change. 

4.2 Registry Countermeasures 

4.2.1 Insecure connections to registries 

Organizations should configure their development tools, orchestrators, and container runtimes to 
only connect to registries over encrypted channels. The specific steps vary between tools, but the 
key goal is to ensure that all data pushed to and pulled from a registry occurs between trusted 
endpoints and is encrypted in transit.  

4.2.2 Stale images in registries 

The risk of using stale images can be mitigated through two primary methods. First, 
organizations can prune registries of unsafe, vulnerable images that should no longer be used.  
This process can be automated based on time triggers and labels associated with images.  
Second, operational practices should emphasize accessing images using immutable names that 
specify discrete versions of images to be used. For example, rather than configuring a 
deployment job to use the image called my-app, configure it to deploy specific versions of the 
image, such as my-app:2.3 and my-app:2.4 to ensure that specific, known good instances of 
images are deployed as part of each job. 

Another option is using a “latest” tag for images and referencing this tag in deployment 
automation. However, because this tag is only a label attached to the image and not a guarantee 
of freshness, organizations should be cautious to not overly trust it. Regardless of whether an 
organization chooses to use discrete names or to use a “latest” tag, it is critical that processes be 
put in place to ensure that either the automation is using the most recent unique name or the 
images tagged “latest” actually do represent the most up-to-date versions. 

4.2.3 Insufficient authentication and authorization restrictions 

All access to registries that contain proprietary or sensitive images should require authentication.  
Any write access to a registry should require authentication to ensure that only images from 
trusted entities can be added to it. For example, only allow developers to push images to the 
specific repositories they are responsible for, rather than being able to update any repository.  

                                                 

6  For more information on NIST-validated cryptographic implementations, see the Cryptographic Module Validation Program 
(CMVP) page at https://csrc.nist.gov/projects/cryptographic-module-validation-program.  

https://csrc.nist.gov/projects/cryptographic-module-validation-program
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Organizations should consider federating with existing accounts, such as their own or a cloud 
provider’s directory service to take advantage of security controls already in place for those 
accounts. All write access to registries should be audited and any read actions for sensitive 
images should similarly be logged.  

Registries also provide an opportunity to apply context-aware authorization controls to actions.  
For example, organizations can configure their continuous integration processes to allow images 
to be signed by the authorized personnel and pushed to a registry only after they have passed a 
vulnerability scan and compliance assessment. Organizations should integrate these automated 
scans into their processes to prevent the promotion and deployment of vulnerable or 
misconfigured images. 

4.3 Orchestrator Countermeasures 

4.3.1 Unbounded administrative access 

Especially because of their wide-ranging span of control, orchestrators should use a least 
privilege access model in which users are only granted the ability to perform the specific actions 
on the specific hosts, containers, and images their job roles require. For example, members of the 
test team should only be given access to the images used in testing and the hosts used for running 
them, and should only be able to manipulate the containers they created. Test team members 
should have limited or no access to containers used in production. 

4.3.2 Unauthorized access 

Access to cluster-wide administrative accounts should be tightly controlled as these accounts 
provide ability to affect all resources in the environment. Organizations should use strong 
authentication methods, such as requiring multifactor authentication instead of just a password.  

Organizations should implement single sign-on to existing directory systems where applicable. 
Single sign-on simplifies the orchestrator authentication experience, makes it easier for users to 
use strong authentication credentials, and centralizes auditing of access, making anomaly 
detection more effective. 

Traditional approaches for data at rest encryption often involve the use of host-based capabilities 
that may be incompatible with containers. Thus, organizations should use tools for encrypting 
data used with containers that allow the data to be accessed properly from containers regardless 
of the node they are running on. Such encryption tools should provide the same barriers to 
unauthorized access and tampering, using the same cryptographic approaches as those defined in 
NIST SP 800-111 [19].  

4.3.3 Poorly separated inter-container network traffic 

Orchestrators should be configured to separate network traffic into discrete virtual networks by 
sensitivity level. While per-app segmentation is also possible, for most organizations and use 
cases, simply defining networks by sensitivity level provides sufficient mitigation of risk with a 
manageable degree of complexity. For example, public-facing apps can share a virtual network, 
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internal apps can use another, and communication between the two should occur through a small 
number of well-defined interfaces. 

4.3.4 Mixing of workload sensitivity levels  

Orchestrators should be configured to isolate deployments to specific sets of hosts by sensitivity 
levels. The particular approach for implementing this varies depending on the orchestrator in use, 
but the general model is to define rules that prevent high sensitivity workloads from being placed 
on the same host as those running lower sensitivity workloads. This can be accomplished 
through the use of host ‘pinning’ within the orchestrator or even simply by having separate, 
individually managed clusters for each sensitivity level. 

While most container runtime environments do an effective job of isolating containers from each 
other and from the host OS, in some cases it may be an unnecessary risk to run apps of different 
sensitivity levels together on the same host OS. Segmenting containers by purpose, sensitivity, 
and threat posture provides additional defense in depth. Concepts such as application tiering and 
network and host segmentation should be taken into consideration when planning app 
deployments. For example, suppose a host is running containers for both a financial database and 
a public-facing blog. While normally the container runtime will effectively isolate these 
environments from each other, there is also a shared responsibility amongst the DevOps teams 
for each app to operate them securely and eliminate unnecessary risk. If the blog app were to be 
compromised by an attacker, there would be far fewer layers of defense to protect the database if 
the two apps are running on the same host.  

Thus, a best practice is to group containers together by relative sensitivity and to ensure that a 
given host kernel only runs containers of a single sensitivity level. This segmentation may be 
provided by using multiple physical servers, but modern hypervisors also provide strong enough 
isolation to effectively mitigate these risks. From the previous example, this may mean that the 
organization has two sensitivity levels for their containers. One is for financial apps and the 
database is included in that group. The other is for web apps and the blog is included in that 
group. The organization would then have two pools of VMs that would each host containers of a 
single severity level. For example, the host called vm-financial may host the containers running 
the financial database as well as the tax reporting software, while a host called vm-web may host 
the blog and the public website.  

By segmenting containers in this manner, it will be much more difficult for an attacker who 
compromises one of the segments to expand that compromise to other segments. An attacker 
who compromises a single server would have limited capabilities to perform reconnaissance and 
attacks on other containers of a similar sensitivity level and not have any additional access 
beyond it. This approach also ensures that any residual data, such as caches or local volumes 
mounted for temp files, stays within the data’s security zone. From the previous example, this 
zoning would ensure that any financial data cached locally and residually after container 
termination would never be available on a host running an app at a lower sensitivity level. 

In larger-scale environments with hundreds of hosts and thousands of containers, this 
segmentation must be automated to be practical to operationalize. Fortunately, common 
orchestration platforms typically include some notion of being able to group apps together, and 
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container security tools can use attributes like container names and labels to enforce security 
policies across them. In these environments, additional layers of defense in depth beyond simple 
host isolation may also leverage this segmentation. For example, an organization may implement 
separate hosting zones or networks to not only isolate these containers within hypervisors but 
also to isolate their network traffic more discretely such that traffic for apps of one sensitivity 
level is separate from that of other sensitivity levels. 

4.3.5 Orchestrator node trust 

Orchestration platforms should be configured to provide features that create a secure 
environment for all the apps they run. Orchestrators should ensure that nodes are securely 
introduced to the cluster, have a persistent identity throughout their lifecycle, and can also 
provide an accurate inventory of nodes and their connectivity states. Organizations should ensure 
that orchestration platforms are designed specifically to be resilient to compromise of individual 
nodes without compromising the overall security of the cluster. A compromised node must be 
able to be isolated and removed from the cluster without disrupting or degrading overall cluster 
operations. Finally, organizations should choose orchestrators that provide mutually 
authenticated network connections between cluster members and end-to-end encryption of intra-
cluster traffic. Because of the portability of containers, many deployments may occur across 
networks organizations do not directly control, so a secure-by-default posture is particularly 
important for this scenario. 

4.4 Container Countermeasures 

4.4.1 Vulnerabilities within the runtime software 

The container runtime must be carefully monitored for vulnerabilities, and when problems are 
detected, they must be remediated quickly. A vulnerable runtime exposes all containers it 
supports, as well as the host itself, to potentially significant risk. Organizations should use tools 
to look for Common Vulnerabilities and Exposures (CVEs) vulnerabilities in the runtimes 
deployed, to upgrade any instances at risk, and to ensure that orchestrators only allow 
deployments to properly maintained runtimes. 

4.4.2 Unbounded network access from containers 

Organizations should control the egress network traffic sent by containers. At minimum, these 
controls should be in place at network borders, ensuring containers are not able to send traffic 
across networks of differing sensitivity levels, such as from an environment hosting secure data 
to the internet, similar to the patterns used for traditional architectures. However, the virtualized 
networking model of inter-container traffic poses an additional challenge.   

Because containers deployed across multiple hosts typically communicate over a virtual, 
encrypted network, traditional network devices are often blind to this traffic. Additionally, 
containers are typically assigned dynamic IP addresses automatically when deployed by 
orchestrators, and these addresses change continuously as the app is scaled and load balanced.  
Thus, ideally, organizations should use a combination of existing network level devices and 
more app-aware network filtering. App-aware tools should be able to not just see the inter-
container traffic, but also to dynamically generate the rules used to filter this traffic based on the 
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specific characteristics of the apps running in the containers. This dynamic rule management is 
critical due to the scale and rate of change of containerized apps, as well as their ephemeral 
networking topology.  

Specifically, app-aware tools should provide the following capabilities: 

• Automated determination of proper container networking surfaces, including both 
inbound ports and process-port bindings; 

• Detection of traffic flows both between containers and other network entities, over both 
‘on the wire’ traffic and encapsulated traffic; and 

• Detection of network anomalies, such as unexpected traffic flows within the 
organization’s network, port scanning, or outbound access to potentially dangerous 
destinations. 

4.4.3 Insecure container runtime configurations 

Organizations should automate compliance with container runtime configuration standards. 
Documented technical implementation guidance, such as the Center for Internet Security Docker 
Benchmark [20], provides details on options and recommended settings, but operationalizing this 
guidance depends on automation. Organizations can use a variety of tools to “scan” and assess 
their compliance at a point in time, but such approaches do not scale. Instead, organizations 
should use tools or processes that continuously assess configuration settings across the 
environment and actively enforce them. 

Additionally, mandatory access control (MAC) technologies like SELinux [21] and AppArmor 
[22] provide enhanced control and isolation for containers running Linux OSs. For example, 
these technologies can be used to provide additional segmentation and assurance that containers 
should only be able to access specific file paths, processes, and network sockets, further 
constraining the ability of even a compromised container to impact the host or other containers.  
MAC technologies provide protection at the host OS layer, ensuring that only specific files, 
paths, and processes are accessible to containerized apps. Organizations are encouraged to use 
the MAC technologies provided by their host OSs in all container deployments. 

Secure computing (seccomp)7 profiles are another mechanism that can be used to constrain the 
system-level capabilities containers are allocated at runtime. Common container runtimes like 
Docker include default seccomp profiles that drop system calls that are unsafe and typically 
unnecessary for container operation. Additionally, custom profiles can be created and passed to 
container runtimes to further limit their capabilities. At a minimum, organizations should ensure 
that containers are run with the default profiles provided by their runtime and should consider 
using additional profiles for high-risk apps. 

4.4.4 App vulnerabilities 

Existing host-based intrusion detection processes and tools are often unable to detect and prevent 
attacks within containers due to the differing technical architecture and operational practices 
                                                 

7  For more information on seccomp, see https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt.  

https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
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previously discussed. Organizations should implement additional tools that are container aware 
and designed to operate at the scale and change rate typically seen with containers. These tools 
should be able to automatically profile containerized apps using behavioral learning and build 
security profiles for them to minimize human interaction. These profiles should then be able to 
prevent and detect anomalies at runtime, including events such as: 

• Invalid or unexpected process execution, 
• Invalid or unexpected system calls, 
• Changes to protected configuration files and binaries, 
• Writes to unexpected locations and file types, 
• Creation of unexpected network listeners, 
• Traffic sent to unexpected network destinations, and 
• Malware storage or execution. 

Containers should also be run with their root filesystems in read-only mode. This approach 
isolates writes to specifically defined directories, which can then be more easily monitored by 
the aforementioned tools. Furthermore, using read-only filesystems makes the containers more 
resilient to compromise since any tampering is isolated to these specific locations and can be 
easily separated from the rest of the app. 

4.4.5 Rogue containers 

Organizations should institute separate environments for development, test, production, and 
other scenarios, each with specific controls to provide role-based access control for container 
deployment and management activities. All container creation should be associated with 
individual user identities and logged to provide a clear audit trail of activity. Further, 
organizations are encouraged to use security tools that can enforce baseline requirements for 
vulnerability management and compliance prior to allowing an image to be run. 

4.5 Host OS Countermeasures 

4.5.1 Large attack surface  

For organizations using container-specific OSs, the threats are typically more minimal to start 
with since the OSs are specifically designed to host containers and have other services and 
functionality disabled. Further, because these optimized OSs are designed specifically for 
hosting containers, they typically feature read-only file systems and employ other hardening 
practices by default. Whenever possible, organizations should use these minimalistic OSs to 
reduce their attack surfaces and mitigate the typical risks and hardening activities associated with 
general-purpose OSs.  

Organizations that cannot use a container-specific OS should follow the guidance in NIST SP 
800-123, Guide to General Server Security [23] to reduce the attack surface of their hosts as 
much as possible. For example, hosts that run containers should only run containers and not run 
other apps, like a web server or database, outside of containers. The host OS should not run 
unnecessary system services, such as a print spooler, that increase its attack and patching surface 
areas. Finally, hosts should be continuously scanned for vulnerabilities and updates applied 
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quickly, not just to the container runtime but also to lower-level components such as the kernel 
that containers rely upon for secure, compartmentalized operation. 

4.5.2 Shared kernel 

In addition to grouping container workloads onto hosts by sensitivity level, organizations should 
not mix containerized and non-containerized workloads on the same host instance. For example, 
if a host is running a web server container, it should not also run a web server (or any other app) 
as a regularly installed component directly within the host OS. Keeping containerized workloads 
isolated to container-specific hosts makes it simpler and safer to apply countermeasures and 
defenses that are optimized for protecting containers. 

4.5.3 Host OS component vulnerabilities 

Organizations should implement management practices and tools to validate the versioning of 
components provided for base OS management and functionality. Even though container-
specific OSs have a much more minimal set of components than general-purpose OSs, they still 
do have vulnerabilities and still require remediation. Organizations should use tools provided by 
the OS vendor or other trusted organizations to regularly check for and apply updates to all 
software components used within the OS. The OS should be kept up to date not only with 
security updates, but also the latest component updates recommended by the vendor. This is 
particularly important for the kernel and container runtime components as newer releases of 
these components often add additional security protections and capabilities beyond simply 
correcting vulnerabilities. Some organizations may choose to simply redeploy new OS instances 
with the necessary updates, rather than updating existing systems. This approach is also valid, 
although it often requires more sophisticated operational practices. 

Host OSs should be operated in an immutable manner with no data or state stored uniquely and 
persistently on the host and no application-level dependencies provided by the host. Instead, all 
app components and dependencies should be packaged and deployed in containers. This enables 
the host to be operated in a nearly stateless manner with a greatly reduced attack surface.  
Additionally, it provides a more trustworthy way to identify anomalies and configuration drift. 

4.5.4 Improper user access rights 

Though most container deployments rely on orchestrators to distribute jobs across hosts, 
organizations should still ensure that all authentication to the OS is audited, login anomalies are 
monitored, and any escalation to perform privileged operations is logged. This makes it possible 
to identify anomalous access patterns such as an individual logging on to a host directly and 
running privileged commands to manipulate containers. 

4.5.5 Host file system tampering 

Ensure that containers are run with the minimal set of file system permissions required. Very 
rarely should containers mount local file systems on a host. Instead, any file changes that 
containers need to persist to disk should be made within storage volumes specifically allocated 
for this purpose. In no case should containers be able to mount sensitive directories on a host’s 
file system, especially those containing configuration settings for the operating system.  
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Organizations should use tools that can monitor what directories are being mounted by 
containers and prevent the deployment of containers that violate these policies. 

4.6 Hardware Countermeasures 

Software-based security is regularly defeated, as acknowledged in NIST SP 800-164 [24]. NIST 
defines trusted computing requirements in NIST SPs 800-147 [25], 800-155 [26], and 800-164. 
To NIST, “trusted” means that the platform behaves as it is expected to: the software inventory is 
accurate, the configuration settings and security controls are in place and operating as they 
should, and so on. “Trusted” also means that it is known that no unauthorized person has 
tampered with the software or its configuration on the hosts. Hardware root of trust is not a 
concept unique to containers, but container management and security tools can leverage 
attestations for the rest of the container technology architecture to ensure containers are being 
run in secure environments. 

The currently available way to provide trusted computing is to:  

1. Measure firmware, software, and configuration data before it is executed using a Root of 
Trust for Measurement (RTM). 

2. Store those measurements in a hardware root of trust, like a trusted platform module 
(TPM). 

3. Validate that the current measurements match the expected measurements. If so, it can be 
attested that the platform can be trusted to behave as expected. 

TPM-enabled devices can check the integrity of the machine during the boot process, enabling 
protection and detection mechanisms to function in hardware, at pre-boot, and in the secure boot 
process. This same trust and integrity assurance can be extended beyond the OS and the boot 
loader to the container runtimes and apps. Note that while standards are being developed to 
enable verification of hardware trust by users of cloud services, not all clouds expose this 
functionality to their customers. In cases where technical verification is not provided, 
organizations should address hardware trust requirements as part of their service agreements with 
cloud providers. 

The increasing complexity of systems and the deeply embedded nature of today’s threats means 
that security should extend across all container technology components, starting with the 
hardware and firmware. This would form a distributed trusted computing model and provide the 
most trusted and secure way to build, run, orchestrate, and manage containers.  

The trusted computing model should start with measured/secure boot, which provides a verified 
system platform, and build a chain of trust rooted in hardware and extended to the bootloaders, 
the OS kernel, and the OS components to enable cryptographic verification of boot mechanisms, 
system images, container runtimes, and container images. For container technologies, these 
techniques are currently applicable at the hardware, hypervisor, and host OS layers, with early 
work in progress to apply these to container-specific components. 
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As of this writing, NIST is collaborating with industry partners to build reference architectures 
based on commercial off-the-shelf products that demonstrate the trusted computing model for 
container environments.8 

 

                                                 

8  For more information on previous NIST efforts in this area, see NIST IR 7904, Trusted Geolocation in the Cloud: Proof of 
Concept Implementation [27].  
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5 Container Threat Scenario Examples 

To illustrate the effectiveness of the recommended countermeasures from Section 4, consider the 
following threat scenario examples for containers. 

5.1 Exploit of a Vulnerability within an Image 

One of the most common threats to a containerized environment is application-level 
vulnerabilities in the software within containers. For example, an organization may build an 
image based on a common web app. If that app has a vulnerability, it may be used to subvert the 
app within the container. Once compromised, the attacker may be able to map other systems in 
the environment, attempt to elevate privileges within the compromised container, or abuse the 
container for use in attacks on other systems (such as acting as a file dropper or command and 
control endpoint). 

Organizations that adopt the recommended countermeasures would have multiple layers of 
defense in depth against such threats: 

1. Detecting the vulnerable image early in the deployment process and having controls in 
place to prevent vulnerable images from being deployed would prevent the vulnerability 
from being introduced into production. 

2. Container-aware network monitoring and filtering would detect anomalous connections 
to other containers during the attempt to map other systems. 

3. Container-aware process monitoring and malware detection would detect the running of 
invalid or unexpected malicious processes and the data they introduce into the 
environment.  

5.2 Exploit of the Container Runtime 

While an uncommon occurrence, if a container runtime were compromised, an attacker could 
utilize this access to attack all the containers on the host and even the host itself. 

Relevant mitigations for this threat scenario include: 

1. The usage of mandatory access control capabilities can provide additional barriers to 
ensure that process and file system activity is still segmented within the defined 
boundaries. 

2. Segmentation of workloads ensures that the scope of the compromise would be limited to 
apps of a common sensitivity level that are sharing the host. For example, a compromised 
runtime on a host only running web apps would not impact runtimes on other hosts 
running containers for financial apps. 

3. Security tools that can report on the vulnerability state of runtimes and prevent the 
deployment of images to vulnerable runtimes can prevent workloads from running there. 

5.3 Running a Poisoned Image 

Because images are easily sourced from public locations, often with unknown provenance, an 
attacker may embed malicious software within images known to be used by a target. For 
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example, if an attacker determines that a target is active on a discussion board about a particular 
project and uses images provided by that project’s web site, the attacker may seek to craft 
malicious versions of these images for use in an attack. 

Relevant mitigations include: 

1. Ensuring that only vetted, tested, validated, and digitally signed images are allowed to be 
uploaded to an organization’s registries.  

2. Ensuring that only trusted images are allowed to run, which will prevent images from 
external, unvetted sources from being used. 

3. Automatically scanning images for vulnerabilities and malware, which may detect 
malicious code such as rootkits embedded within an image. 

4. Implementing runtime controls that limit the container's ability to abuse resources, 
escalate privileges, and run executables. 

5. Using container-level network segmentation to limit the “blast radius” of what the 
poisoned image might do. 

6. Validating a container runtime operates following least-privilege and least-access 
principles. 

7. Building a threat profile of the container's runtime. This includes, but is not limited to, 
processes, network calls, and filesystem changes. 

8. Validating the integrity of images before runtime by leveraging hashes and digital 
signatures.  

9. Restrict images from being run based on rules establishing acceptable vulnerability 
severity levels. For example, prevent images with vulnerabilities that have a Moderate or 
higher CVSS rating from being run. 
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6 Container Technology Life Cycle Security Considerations  

It is critically important to carefully plan before installing, configuring, and deploying container 
technologies. This helps ensure that the container environment is as secure as possible and is in 
compliance with all relevant organizational policies, external regulations, and other 
requirements. 

There is a great deal of similarity in the planning and implementation recommendations for 
container technologies and virtualization solutions. Section 5 of NIST SP 800-125 [1] already 
contains a full set of recommendations for virtualization solutions. Instead of repeating all those 
recommendations here, this section points readers to that document and states that, besides the 
exceptions listed below, organizations should apply all the NIST SP 800-125 Section 5 
recommendations in a container technology context. For example, instead of creating a 
virtualization security policy, create a container technology security policy. 

This section of the document lists exceptions and additions to the NIST SP 800-125 Section 5 
recommendations, grouped by the corresponding phase in the planning and implementation life 
cycle. 

6.1 Initiation Phase 

Organizations should consider how other security policies may be affected by containers and 
adjust these policies as needed to take containers into consideration. For example, policies for 
incident response (especially forensics) and vulnerability management may need to be adjusted 
to take into account the special requirements of containers. 

The introduction of container technologies might disrupt the existing culture and software 
development methodologies within the organization. To take full advantage of the benefits 
containers can provide, the organization’s processes should be tailored to support this new way 
of developing, running, and supporting apps. Traditional development practices, patching 
techniques, and system upgrade processes might not directly apply to a containerized 
environment, and it is important that the employees within the organization are willing to adapt 
to a new model. New processes can consider and address any potential culture shock that is 
introduced by the technology shift. Education and training can be offered to anyone involved in 
the software development lifecycle to allow people to become comfortable with the new way to 
build, ship, and run apps. 

6.2 Planning and Design Phase 

The primary container-specific consideration for the planning and design phase is forensics. 
Because containers mostly build on components already present in OSs, the tools and techniques 
for performing forensics in a containerized environment are mostly an evolution of existing 
practices. The immutable nature of containers and images can actually improve forensic 
capabilities because the demarcation between what an image should do and what actually 
occurred during an incident is clearer. For example, if a container launched to run a web server 
suddenly starts a mail relay, it is very clear that the new process was not part of the original 
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image used to create the container. On traditional platforms, with less separation between the OS 
and apps, making this differentiation can be much more difficult. 

Organizations that are familiar with process, memory, and disk incident response activities will 
find them largely similar when working with containers. However, there are some differences to 
keep in mind as well. 

Containers typically use a layered file system that is virtualized from the host OS. Directly 
examining paths on the hosts typically only reveals the outer boundary of these layers, not the 
files and data within them. Thus, when responding to incidents in containerized environments, 
users should identify the specific storage provider in use and understand how to properly 
examine its contents offline. 

Containers are typically connected to each other using virtualized overlay networks. These 
overlay networks frequently use encapsulation and encryption to allow the traffic to be routed 
over existing networks securely. However, this means that when investigating incidents on 
container networks, particularly when doing any live packet analysis, the tools used must be 
aware of these virtualized networks and understand how to extract the embedded IP frames from 
within them for parsing with existing tools. 

Process and memory activity within containers is largely similar to that which would be observed 
within traditional apps, but with different parent processes. For example, container runtimes may 
spawn all processes within containers in a nested fashion in which the runtime is the top-level 
process with first-level descendants per container and second-level descendants for each process 
within the container.  For example: 

├─containerd─┬───┬───[container1─┬─bash] 
│            │   │               └─8*[{thread}]] 
│            │   ├─container2────┬─start.sh─┬─mongod───22*[{mongod}] 
│            │   │               │          └─node─┬─4*[{V8 WorkerThread}] 
│            │   │               │                 └─5*[{node}] 
│            │   │               └─8*[{thread}] 
│            │   ├─container3────┬─mysqld───28*[{mysqld}] 
│            │   │               └─8*[{thread}] 

6.3 Implementation Phase 

After the container technology has been designed, the next step is to implement and test a 
prototype of the design before putting the solution into production. Be aware that container 
technologies do not offer the types of introspection capabilities that VM technologies do. 

NIST SP 800-125 [1] cites several aspects of virtualization technologies that should be evaluated 
before production deployment, including authentication, connectivity and networking, app 
functionality, management, performance, and the security of the technology itself. In addition to 
those, it is important to also evaluate the container technology’s isolation capabilities. Ensure 
that processes within the container can access all resources they are permitted to and cannot view 
or access any other resources. 
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Implementation may require new security tools that are specifically focused on containers and 
cloud-native apps and that have visibility into their operations that traditional tools lack. Finally, 
deployment may also include altering the configuration of existing security controls and 
technologies, such as security event logging, network management, code repositories, and 
authentication servers both to work with containers directly and to integrate with these new 
container security tools. 

When the prototype evaluation has been completed and the container technology is ready for 
production usage, containers should initially be used for a small number of apps. Problems that 
occur are likely to affect multiple apps, so it is helpful to identify these problems early on so they 
can be addressed before further deployment. A phased deployment also provides time for 
developers and IT staff (e.g., system administrators, help desk) to be trained on its usage and 
support. 

6.4 Operations and Maintenance Phase 

Operational processes that are particularly important for maintaining the security of container 
technologies, and thus should be performed regularly, include updating all images and 
distributing those updated images to containers to take the place of older images. Other security 
best practices, such as performing vulnerability management and updates for other supporting 
layers like hosts and orchestrators, are also key ongoing operational tasks. Container security and 
monitoring tools should similarly be integrated with existing security information and event 
management (SIEM) tools to ensure container-related events flow through the same tools and 
processes used to provide security throughout the rest of the environment. 

If and when security incidents occur within a containerized environment, organizations should be 
prepared to respond with processes and tools that are optimized for the unique aspects of 
containers. The core guidance outlined in NIST SP 800-61, Computer Security Incident 
Handling Guide [28], is very much applicable for containerized environments as well. However, 
organizations adopting containers should ensure they enhance their responses for some of the 
unique aspects of container security. 

• Because containerized apps may be run by a different team than the traditional operations 
team, organizations should ensure that whatever teams are responsible for container 
operations are brought into the incident response plan and understand their role in it. 

• As discussed throughout this document, the ephemeral and automated nature of container 
management may not be aligned with the asset management policies and tools an 
organization has traditionally used.  Incident response teams must be able to know the 
roles, owners, and sensitivity levels of containers, and be able to integrate this data into 
their process. 

• Clear procedures should be defined to respond to container related incidents.  For 
example, if a particular image is being exploited, but that image is in use across hundreds 
of containers, the response team may need to shut down all of these containers to stop the 
attack.  While single vulnerabilities have long been able to cause problems across many 
systems, with containers, the response may require rebuilding and redeploying a new 
image widely, rather than installing a patch to existing systems.  This change in response 
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may involve different teams and approvals and should be understood and practiced ahead 
of time. 

• As discussed previously, logging and other forensic data may be stored differently in a 
containerized environment.  Incident response teams should be familiar with the different 
tools and techniques required to gather data and have documented processes specifically 
for these environments. 

6.5 Disposition Phase 

The ability for containers to be deployed and destroyed automatically based on the needs of an 
app allows for highly efficient systems but can also introduce some challenges for records 
retention, forensic, and event data requirements. Organizations should make sure that appropriate 
mechanisms are in place to satisfy their data retention policies. Examples of issues that should be 
addressed are how containers and images should be destroyed, what data should be extracted 
from a container before disposal and how that data extraction should be performed, how 
cryptographic keys used by a container should be revoked or deleted, etc.  

Data stores and media that support the containerized environment should be included in any 
disposal plans developed by the organization. 
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7 Conclusion 

Containers represent a transformational change in the way apps are built and run. They do not 
necessitate dramatically new security best practices; on the contrary, most important aspects of 
container security are refinements of well-established techniques and principles. This document 
has updated and expanded general security recommendations to take the risks particular to 
container technologies into account. 

This document has already discussed some of the differences between securing containers and 
securing the same apps in VMs. It is useful to summarize the guidance in this document around 
those points. 

In container environments there are many more entities, so security processes and tools must be 
able to scale accordingly. Scale does not just mean the total number of objects supported in a 
database, but also how effectively and autonomously policy can be managed. Many 
organizations struggle with the burden of managing security across hundreds of VMs. As 
container-centric architectures become the norm and these organizations are responsible for 
thousands or tens of thousands of containers, their security practices should emphasize 
automation and efficiency to keep up. 

With containers there is a much higher rate of change, moving from updating an app a few times 
a year to a few times a week or even a day. What used to be acceptable to do manually no longer 
is. Automation is not just important to deal with the net number of entities, but also with how 
frequently those entities change. Being able to centrally express policy and have software 
manage enforcement of it across the environment is vital. Organizations that adopt containers 
should be prepared to manage this frequency of change. This may require fundamentally new 
operational practices and organizational evolution. 

The use of containers shifts much of the responsibility for security to developers, so 
organizations should ensure their developers have all the information, skills, and tools they need 
to make sound decisions. Also, security teams should be enabled to actively enforce quality 
throughout the development cycle. Organizations that are successful at this transition gain 
security benefit in being able to respond to vulnerabilities faster and with less operational burden 
than ever before. 

Security must be as portable as the containers themselves, so organizations should adopt 
techniques and tools that are open and work across platforms and environments. Many 
organizations will see developers build in one environment, test in another, and deploy in a third, 
so having consistency in assessment and enforcement across these is key. Portability is also not 
just environmental but also temporal. Continuous integration and deployment practices erode the 
traditional walls between phases of the development and deployment cycle, so organizations 
need to ensure consistent, automated security practices across creation of the image, storage of 
the image in registries, and running of the images in containers. 

Organizations that navigate these changes can begin to leverage containers to actually improve 
their overall security. The immutability and declarative nature of containers enables 
organizations to begin realizing the vision of more automated, app-centric security that requires 
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minimal manual involvement and that updates itself as the apps change. Containers are an 
enabling capability in organizations moving from reactive, manual, high-cost security models to 
those that enable better scale and efficiency, thus lowering risk. 
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Appendix A—NIST Resources for Securing Non-Core Components 

This appendix lists NIST resources for securing non-core container technology components, 
including developer systems, testing and accreditation systems, administrator systems, and host 
hardware and virtual machine managers. Many more resources are available from other 
organizations. 

Table 1: NIST Resources for Securing Non-Core Components 

Resource Name and URI Applicability 
SP 800-40 Revision 3, Guide to Enterprise Patch Management Technologies  
https://doi.org/10.6028/NIST.SP.800-40r3  

All IT products and systems 

SP 800-46 Revision 2, Guide to Enterprise Telework, Remote Access, and Bring 
Your Own Device (BYOD) Security 
https://doi.org/10.6028/NIST.SP.800-46r2  

Client operating systems, 
client apps 

SP 800-53 Revision 4, Security and Privacy Controls for Federal Information 
Systems and Organizations 
https://doi.org/10.6028/NIST.SP.800-53r4  

All IT products and systems 

SP 800-70 Revision 3, National Checklist Program for IT Products: Guidelines for 
Checklist Users and Developers 
https://doi.org/10.6028/NIST.SP.800-70r3  

Server operating systems, 
client operating systems, 
server apps, client apps 

SP 800-83 Revision 1, Guide to Malware Incident Prevention and Handling for 
Desktops and Laptops 
https://doi.org/10.6028/NIST.SP.800-83r1  

Client operating systems, 
client apps 

SP 800-123, Guide to General Server Security  
https://doi.org/10.6028/NIST.SP.800-123  

Servers 

SP 800-124 Revision 1, Guidelines for Managing the Security of Mobile Devices in 
the Enterprise 
https://doi.org/10.6028/NIST.SP.800-124r1  

Mobile devices 

SP 800-125, Guide to Security for Full Virtualization Technologies 
https://doi.org/10.6028/NIST.SP.800-125  

Hypervisors and virtual 
machines 

SP 800-125A, Security Recommendations for Hypervisor Deployment (Second 
Draft) https://csrc.nist.gov/publications/detail/sp/800-125A/draft   

Hypervisors and virtual 
machines 

SP 800-125B, Secure Virtual Network Configuration for Virtual Machine (VM) 
Protection  
https://doi.org/10.6028/NIST.SP.800-125B  

Hypervisors and virtual 
machines 

SP 800-147, BIOS Protection Guidelines 
https://doi.org/10.6028/NIST.SP.800-147  

Client hardware 

SP 800-155, BIOS Integrity Measurement Guidelines 
https://csrc.nist.gov/publications/detail/sp/800-155/draft  

Client hardware 

SP 800-164, Guidelines on Hardware-Rooted Security in Mobile Devices 
https://csrc.nist.gov/publications/detail/sp/800-164/draft  

Mobile devices 

 

  

https://doi.org/10.6028/NIST.SP.800-40r3
https://doi.org/10.6028/NIST.SP.800-46r2
https://doi.org/10.6028/NIST.SP.800-53r4
https://doi.org/10.6028/NIST.SP.800-70r3
https://doi.org/10.6028/NIST.SP.800-83r1
https://doi.org/10.6028/NIST.SP.800-123
https://doi.org/10.6028/NIST.SP.800-124r1
https://doi.org/10.6028/NIST.SP.800-125
https://csrc.nist.gov/publications/detail/sp/800-125A/draft
https://doi.org/10.6028/NIST.SP.800-125B
https://doi.org/10.6028/NIST.SP.800-147
https://csrc.nist.gov/publications/detail/sp/800-155/draft
https://csrc.nist.gov/publications/detail/sp/800-164/draft
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Appendix B—NIST SP 800-53 and NIST Cybersecurity Framework Security Controls 
Related to Container Technologies  

The security controls from NIST SP 800-53 Revision 4 [29] that are most important for container 
technologies are listed in Table 2. 

Table 2: Security Controls from NIST SP 800-53 for Container Technology Security 

NIST SP 800-53 Control Related Controls References 
AC-2, Account 
Management 

AC-3, AC-4, AC-5, AC-6, AC-10, AC-17, AC-19, AC-20, 
AU-9, IA-2, IA-4, IA-5, IA-8, CM-5, CM-6, CM-11, MA-3, 
MA-4, MA-5, PL-4, SC-13 

 

AC-3, Access Enforcement AC-2, AC-4, AC-5, AC-6, AC-16, AC-17, AC-18, AC-19, 
AC-20, AC-21, AC- 22, AU-9, CM-5, CM-6, CM-11, MA-3, 
MA-4, MA-5, PE-3 

 

AC-4, Information Flow 
Enforcement 

AC-3, AC-17, AC-19, AC-21, CM-6, CM-7, SA-8, SC-2, 
SC-5, SC-7, SC-18 

 

AC-6, Least Privilege AC-2, AC-3, AC-5, CM-6, CM-7, PL-2  
AC-17, Remote Access AC-2, AC-3, AC-18, AC-19, AC-20, CA-3, CA-7, CM-8, 

IA-2, IA-3, IA-8, MA-4, PE-17, PL-4, SC-10, SI-4 
NIST SPs 800-46, 800-77, 
800-113, 800-114, 800-
121 

AT-3, Role-Based Security 
Training 

AT-2, AT-4, PL-4, PS-7, SA-3, SA-12, SA-16 C.F.R. Part 5 Subpart C 
(5C.F.R.930.301); NIST 
SPs 800-16, 800- 50 

AU-2, Audit Events AC-6, AC-17, AU-3, AU-12, MA-4, MP-2, MP-4, SI-4 NIST SP 800-92; 
https://idmanagement.gov/  

AU-5, Response to Audit 
Processing Failures 

AU-4, SI-12  

AU-6, Audit Review, 
Analysis, and Reporting 

AC-2, AC-3, AC-6, AC-17, AT-3, AU-7, AU-16, CA-7, CM-
5, CM-10, CM-11, IA-3, IA-5, IR-5, IR-6, MA-4, MP-4, PE-
3, PE-6, PE-14, PE-16, RA-5, SC-7, SC-18, SC-19, SI-3, 
SI-4, SI-7 

 

AU-8, Time Stamps AU-3, AU-12  
AU-9, Protection of Audit 
Information 

AC-3, AC-6, MP-2, MP-4, PE-2, PE-3, PE-6  

AU-12, Audit Generation AC-3, AU-2, AU-3, AU-6, AU-7  
CA-9, Internal System 
Connections 

AC-3, AC-4, AC-18, AC-19, AU-2, AU-12, CA- 7, CM-2, 
IA-3, SC-7, SI-4 

 

CM-2, Baseline 
Configuration 

CM-3, CM-6, CM-8, CM-9, SA-10, PM-5, PM-7 NIST SP 800-128 

CM-3, Configuration 
Change Control 

CA-7, CM-2, CM-4, CM-5, CM-6, CM-9, SA-10, SI- 2, SI-
12 

NIST SP 800-128 

CM-4, Security Impact 
Analysis 

CA-2, CA-7, CM-3, CM-9, SA-4, SA-5, SA-10, SI-2 NIST SP 800-128 

CM-5, Access Restrictions 
for Change 

AC-3, AC-6, PE-3  

CM-6, Configuration 
Settings 

AC-19, CM-2, CM-3, CM-7, SI-4 OMB Memoranda 07-11, 
07-18, 08-22; NIST SPs 
800-70, 800-128; 
https://nvd.nist.gov; 
https://checklists.nist.gov; 
https://www.nsa.gov  

https://idmanagement.gov/
https://nvd.nist.gov/
https://checklists.nist.gov/
https://www.nsa.gov/
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NIST SP 800-53 Control Related Controls References 
CM-7, Least Functionality AC-6, CM-2, RA-5, SA-5, SC-7 DoD Instruction 8551.01 
CM-9, Configuration 
Management Plan 

CM-2, CM-3, CM-4, CM-5, CM-8, SA-10 NIST SP 800-128 

CP-2, Contingency Plan AC-14, CP-6, CP-7, CP-8, CP-9, CP-10, IR-4, IR-8, MP-
2, MP-4, MP-5, PM-8, PM-11 

Federal Continuity 
Directive 1; NIST SP 800-
34 

CP-9, Information System 
Backup 

CP-2, CP- 6, MP-4, MP-5, SC-13 NIST SP 800-34 

CP-10, Information System 
Recovery and 
Reconstitution 

CA-2, CA-6, CA-7, CP-2, CP-6, CP-7, CP-9, SC-24 Federal Continuity 
Directive 1; NIST SP 800-
34 

IA-2, Identification and 
Authentication 
(Organizational Users) 

AC-2, AC-3, AC-14, AC-17, AC-18, IA-4, IA-5, IA-8 HSPD-12; OMB 
Memoranda 04-04, 06-16, 
11-11; FIPS 201; NIST 
SPs 800-63, 800-73, 800-
76, 800-78; FICAM 
Roadmap and 
Implementation Guidance; 
https://idmanagement.gov/  

IA-4, Identifier 
Management 

AC-2, IA-2, IA-3, IA-5, IA-8, SC-37 FIPS 201; NIST SPs 800-
73, 800-76, 800-78 

IA-5, Authenticator 
Management 

AC-2, AC-3, AC-6, CM-6, IA-2, IA-4, IA-8, PL-4, PS-5, 
PS-6, SC-12, SC-13, SC-17, SC-28 

OMB Memoranda 04-04, 
11-11; FIPS 201; NIST 
SPs 800-63, 800-73, 800-
76, 800-78; FICAM 
Roadmap and 
Implementation Guidance; 
https://idmanagement.gov/ 

IR-1, Incident Response 
Policy and Procedures 

PM-9 NIST SPs 800-12, 800-61, 
800-83, 800-100 

IR-4, Incident Handling AU-6, CM-6, CP-2, CP-4, IR-2, IR-3, IR-8, PE-6, SC-5, 
SC-7, SI-3, SI-4, SI-7 

EO 13587; NIST SP 800-
61 

MA-2, Controlled 
Maintenance 

CM-3, CM-4, MA-4, MP-6, PE-16, SA-12, SI-2  

MA-4, Nonlocal 
Maintenance 

AC- 2, AC-3, AC-6, AC-17, AU-2, AU-3, IA-2, IA-4, IA-5, 
IA-8, MA-2, MA-5, MP-6, PL-2, SC-7, SC-10, SC-17 

FIPS 140-2, 197, 201; 
NIST SPs 800-63, 800-88; 
CNSS Policy 15 

PL-2, System Security 
Plan 

AC-2, AC-6, AC-14, AC-17, AC-20, CA-2, CA-3, CA-7, 
CM-9, CP-2, IR-8, MA-4, MA-5, MP-2, MP-4, MP-5, PL-7, 
PM-1, PM-7, PM-8, PM-9, PM-11, SA-5, SA-17 

NIST SP 800-18 

PL-4, Rules of Behavior AC-2, AC-6, AC-8, AC-9, AC-17, AC-18, AC-19, AC-20, 
AT-2, AT-3, CM-11, IA-2, IA-4, IA-5, MP-7, PS-6, PS-8, 
SA-5 

NIST SP 800-18 

RA-2, Security 
Categorization 

CM-8, MP-4, RA-3, SC-7 FIPS 199; NIST SPs 800-
30, 800-39, 800-60 

RA-3, Risk Assessment RA-2, PM-9 OMB Memorandum 04-
04; NIST SPs 800-30, 
800-39; 
https://idmanagement.gov/  

SA-10, Developer 
Configuration 
Management 

CM-3, CM-4, CM-9, SA-12, SI-2 NIST SP 800-128 

https://idmanagement.gov/
https://idmanagement.gov/
https://idmanagement.gov/
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NIST SP 800-53 Control Related Controls References 
SA-11, Developer Security 
Testing and Evaluation 

CA-2, CM-4, SA-3, SA-4, SA-5, SI-2 ISO/IEC 15408; NIST SP 
800-53A; 
https://nvd.nist.gov; 
http://cwe.mitre.org; 
http://cve.mitre.org; 
http://capec.mitre.org  

SA-15, Development 
Process, Standards, and 
Tools 

SA-3, SA-8  

SA-19, Component 
Authenticity 

PE-3, SA-12, SI-7  

SC-2, Application 
Partitioning 

SA-4, SA-8, SC-3  

SC-4, Information in 
Shared Resources 

AC-3, AC-4, MP-6  

SC-6, Resource 
Availability 

  

SC-8, Transmission 
Confidentiality and 
Integrity 

AC-17, PE-4 FIPS 140-2, 197; NIST 
SPs 800-52, 800-77, 800-
81, 800-113; CNSS Policy 
15; NSTISSI No. 7003 

SI-2, Flaw Remediation CA-2, CA-7, CM-3, CM-5, CM-8, MA-2, IR-4, RA-5, SA-
10, SA-11, SI-11 

NIST SPs 800-40, 800-
128 

SI-4, Information System 
Monitoring 

AC-3, AC-4, AC-8, AC-17, AU-2, AU-6, AU-7, AU-9, AU-
12, CA-7, IR-4, PE-3, RA-5, SC-7, SC-26, SC-35, SI-3, 
SI-7 

NIST SPs 800-61, 800-83, 
800-92, 800-137 

SI-7, Software, Firmware, 
and Information Integrity 

SA-12, SC-8, SC-13, SI-3 NIST SPs 800-147, 800-
155 

 

The list below details the NIST Cybersecurity Framework [30] subcategories that are most 
important for container technology security.  

• Identify: Asset Management 
o ID.AM-3: Organizational communication and data flows are mapped 
o ID.AM-5: Resources (e.g., hardware, devices, data, and software) are prioritized 

based on their classification, criticality, and business value 
• Identify: Risk Assessment 

o ID.RA-1: Asset vulnerabilities are identified and documented 
o ID.RA-3: Threats, both internal and external, are identified and documented 
o ID.RA-4: Potential business impacts and likelihoods are identified 
o ID.RA-5: Threats, vulnerabilities, likelihoods, and impacts are used to determine risk 
o ID.RA-6: Risk responses are identified and prioritized 

• Protect: Access Control 
o PR.AC-1: Identities and credentials are managed for authorized devices and users 
o PR.AC-2: Physical access to assets is managed and protected 
o PR.AC-3: Remote access is managed 
o PR.AC-4: Access permissions are managed, incorporating the principles of least 

privilege and separation of duties 

https://nvd.nist.gov/
http://cwe.mitre.org/
http://cve.mitre.org/
http://capec.mitre.org/
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• Protect: Awareness and Training 
o PR.AT-2: Privileged users understand roles & responsibilities 
o PR.AT-5: Physical and information security personnel understand roles & 

responsibilities 
• Protect: Data Security 

o PR.DS-2: Data-in-transit is protected 
o PR.DS-4: Adequate capacity to ensure availability is maintained 
o PR.DS-5: Protections against data leaks are implemented 
o PR.DS-6: Integrity checking mechanisms are used to verify software, firmware, and 

information integrity 
• Protect: Information Protection Processes and Procedures 

o PR.IP-1: A baseline configuration of information technology/industrial control 
systems is created and maintained 

o PR.IP-3: Configuration change control processes are in place 
o PR.IP-6: Data is destroyed according to policy 
o PR.IP-9: Response plans (Incident Response and Business Continuity) and recovery 

plans (Incident Recovery and Disaster Recovery) are in place and managed 
o PR.IP-12: A vulnerability management plan is developed and implemented 

• Protect: Maintenance 
o PR.MA-1: Maintenance and repair of organizational assets is performed and logged 

in a timely manner, with approved and controlled tools 
o PR.MA-2: Remote maintenance of organizational assets is approved, logged, and 

performed in a manner that prevents unauthorized access 
• Protect: Protective Technology 

o PR.PT-1: Audit/log records are determined, documented, implemented, and reviewed 
in accordance with policy 

o PR.PT-3: Access to systems and assets is controlled, incorporating the principle of 
least functionality 

• Detect: Anomalies and Events 
o DE.AE-2: Detected events are analyzed to understand attack targets and methods 

• Detect: Security Continuous Monitoring 
o DE.CM-1: The network is monitored to detect potential cybersecurity events 
o DE.CM-7: Monitoring for unauthorized personnel, connections, devices, and software 

is performed 
• Respond: Response Planning 

o RS.RP-1: Response plan is executed during or after an event 
• Respond: Analysis 

o RS.AN-1: Notifications from detection systems are investigated 
o RS.AN-3: Forensics are performed 

• Respond: Mitigation 
o RS.MI-1: Incidents are contained 
o RS.MI-2: Incidents are mitigated 
o RS.MI-3: Newly identified vulnerabilities are mitigated or documented as accepted 

risks 
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• Recover: Recovery Planning 
o RC.RP-1: Recovery plan is executed during or after an event 

 

Table 3 lists the security controls from NIST SP 800-53 Revision 4 [29] that can be 
accomplished partially or completely by using container technologies. The rightmost column 
lists the sections of this document that map to each NIST SP 800-53 control. 

Table 3: NIST SP 800-53 Controls Supported by Container Technologies 

NIST SP 800-53 
Control 

Container Technology Relevancy Related Sections of 
This Document 

CM-3, Configuration 
Change Control 

Images can be used to help manage change control for apps. 2.1, 2.2, 2.3, 2.4, 4.1 

SC-2, Application 
Partitioning 

Separating user functionality from administrator functionality can 
be accomplished in part by using containers or other virtualization 
technologies so that the functionality is performed in different 
containers. 

2 (introduction), 2.3, 
4.5.2 

SC-3, Security 
Function Isolation 

Separating security functions from non-security functions can be 
accomplished in part by using containers or other virtualization 
technologies so that the functions are performed in different 
containers. 

2 (introduction), 2.3, 
4.5.2 

SC-4, Information in 
Shared Resources 

Container technologies are designed to restrict each container’s 
access to shared resources so that information cannot 
inadvertently be leaked from one container to another. 

2 (introduction), 2.2, 
2.3, 4.4 

SC-6, Resource 
Availability 

The maximum resources available for each container can be 
specified, thus protecting the availability of resources by not 
allowing any container to consume excessive resources. 

2.2, 2.3 

SC-7, Boundary 
Protection 

Boundaries can be established and enforced between containers 
to restrict their communications with each other. 

2 (introduction), 2.2, 
2.3, 4.4 

SC-39, Process 
Isolation 

Multiple containers can run processes simultaneously on the 
same host, but those processes are isolated from each other. 

2 (introduction), 2.1, 
2.2, 2.3, 4.4 

SI-7, Software, 
Firmware, and 
Information Integrity 

Unauthorized changes to the contents of images can easily be 
detected and the altered image replaced with a known good copy. 

2.3, 4.1, 4.2 

SI-14, Non-
Persistence 

Images running within containers are replaced as needed with 
new image versions, so data, files, executables, and other 
information stored within running images is not persistent. 

2.1, 2.3, 4.1 

 

Similar to Table 3, Table 4 lists the NIST Cybersecurity Framework [30] subcategories that can 
be accomplished partially or completely by using container technologies. The rightmost column 
lists the sections of this document that map to each Cybersecurity Framework subcategory. 

Table 4: NIST Cybersecurity Framework Subcategories Supported by Container Technologies 

Cybersecurity Framework 
Subcategory 

Container Technology Relevancy Related Sections 
of This Document 

PR.DS-4: Adequate capacity to ensure 
availability is maintained 

The maximum resources available for each 
container can be specified, thus protecting the 
availability of resources by not allowing any 
container to consume excessive resources. 

2.2, 2.3 
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Cybersecurity Framework 
Subcategory 

Container Technology Relevancy Related Sections 
of This Document 

PR.DS-5: Protections against data 
leaks are implemented 

Container technologies are designed to restrict 
each container’s access to shared resources so 
that information cannot inadvertently be leaked 
from one container to another. 

2 (introduction), 2.2, 
2.3, 4.4 

PR.DS-6: Integrity checking 
mechanisms are used to verify 
software, firmware, and information 
integrity 

Unauthorized changes to the contents of images 
can easily be detected and the altered image 
replaced with a known good copy. 

2.3, 4.1, 4.2 

PR.DS-7: The development and testing 
environment(s) are separate from the 
production environment 

Using containers makes it easier to have 
separate development, testing, and production 
environments because the same image can be 
used in all environments without adjustments. 

2.1, 2.3 

PR.IP-3: Configuration change control 
processes are in place 

Images can be used to help manage change 
control for apps. 

2.1, 2.2, 2.3, 2.4, 4.1 

 

Information on these controls and guidelines on possible implementations can be found in the 
following NIST publications: 

• FIPS 140-2, Security Requirements for Cryptographic Modules 
• FIPS 197, Advanced Encryption Standard (AES) 
• FIPS 199, Standards for Security Categorization of Federal Information and Information 

Systems 
• FIPS 201-2, Personal Identity Verification (PIV) of Federal Employees and Contractors  
• SP 800-12 Rev. 1, An Introduction to Information Security 
• Draft SP 800-16 Rev. 1, A Role-Based Model for Federal Information 

Technology/Cybersecurity Training 
• SP 800-18 Rev. 1, Guide for Developing Security Plans for Federal Information Systems 
• SP 800-30 Rev. 1, Guide for Conducting Risk Assessments 
• SP 800-34 Rev. 1, Contingency Planning Guide for Federal Information Systems 
• SP 800-39, Managing Information Security Risk: Organization, Mission, and Information 

System View 
• SP 800-40 Rev. 3, Guide to Enterprise Patch Management Technologies 
• SP 800-46 Rev. 2, Guide to Enterprise Telework, Remote Access, and Bring Your Own 

Device (BYOD) Security 
• SP 800-50, Building an Information Technology Security Awareness and Training 

Program 
• SP 800-52 Rev. 1, Guidelines for the Selection, Configuration, and Use of Transport 

Layer Security (TLS) Implementations 

https://doi.org/10.6028/NIST.FIPS.140-2
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.199
https://doi.org/10.6028/NIST.FIPS.199
https://doi.org/10.6028/NIST.FIPS.201-2
https://doi.org/10.6028/NIST.SP.800-12r1
https://csrc.nist.gov/publications/detail/sp/800-16/rev-1/draft
https://csrc.nist.gov/publications/detail/sp/800-16/rev-1/draft
https://doi.org/10.6028/NIST.SP.800-18r1
https://doi.org/10.6028/NIST.SP.800-30r1
https://doi.org/10.6028/NIST.SP.800-34r1
https://doi.org/10.6028/NIST.SP.800-39
https://doi.org/10.6028/NIST.SP.800-39
https://doi.org/10.6028/NIST.SP.800-40r3
https://doi.org/10.6028/NIST.SP.800-46r2
https://doi.org/10.6028/NIST.SP.800-46r2
https://doi.org/10.6028/NIST.SP.800-50
https://doi.org/10.6028/NIST.SP.800-50
https://doi.org/10.6028/NIST.SP.800-52r1
https://doi.org/10.6028/NIST.SP.800-52r1
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• SP 800-53 Rev. 4, Security and Privacy Controls for Federal Information Systems and 
Organizations   

• SP 800-53A Rev. 4, Assessing Security and Privacy Controls in Federal Information 
Systems and Organizations: Building Effective Assessment Plans 

• SP 800-60 Rev. 1 Vol. 1, Guide for Mapping Types of Information and Information 
Systems to Security Categories 

• SP 800-61 Rev. 2, Computer Security Incident Handling Guide 
• SP 800-63 Rev. 3, Digital Identity Guidelines 
• SP 800-70 Rev. 3, National Checklist Program for IT Products: Guidelines for Checklist 

Users and Developers 
• SP 800-73-4, Interfaces for Personal Identity Verification  
• SP 800-76-2, Biometric Specifications for Personal Identity Verification 
• SP 800-77, Guide to IPsec VPNs 
• SP 800-78-4, Cryptographic Algorithms and Key Sizes for Personal Identification 

Verification (PIV) 
• SP 800-81-2, Secure Domain Name System (DNS) Deployment Guide 
• SP 800-83 Rev. 1, Guide to Malware Incident Prevention and Handling for Desktops and 

Laptops 
• SP 800-88 Rev. 1, Guidelines for Media Sanitization 
• SP 800-92, Guide to Computer Security Log Management 
• SP 800-100, Information Security Handbook: A Guide for Managers 
• SP 800-113, Guide to SSL VPNs 
• SP 800-114 Rev. 1, User's Guide to Telework and Bring Your Own Device (BYOD) 

Security 
• SP 800-121 Rev. 2, Guide to Bluetooth Security 
• SP 800-128, Guide for Security-Focused Configuration Management of Information 

Systems 
• SP 800-137, Information Security Continuous Monitoring (ISCM) for Federal 

Information Systems and Organizations 
• SP 800-147, BIOS Protection Guidelines 
• Draft SP 800-155, BIOS Integrity Measurement Guidelines 

 

  

https://doi.org/10.6028/NIST.SP.800-53r4
https://doi.org/10.6028/NIST.SP.800-53r4
https://doi.org/10.6028/NIST.SP.800-53Ar4
https://doi.org/10.6028/NIST.SP.800-53Ar4
https://doi.org/10.6028/NIST.SP.800-60v1r1
https://doi.org/10.6028/NIST.SP.800-60v1r1
https://doi.org/10.6028/NIST.SP.800-61r2
https://doi.org/10.6028/NIST.SP.800-63-3
https://doi.org/10.6028/NIST.SP.800-70r3
https://doi.org/10.6028/NIST.SP.800-70r3
https://doi.org/10.6028/NIST.SP.800-73-4
https://doi.org/10.6028/NIST.SP.800-76-2
https://doi.org/10.6028/NIST.SP.800-77
https://doi.org/10.6028/NIST.SP.800-78-4
https://doi.org/10.6028/NIST.SP.800-78-4
https://doi.org/10.6028/NIST.SP.800-81-2
https://doi.org/10.6028/NIST.SP.800-83r1
https://doi.org/10.6028/NIST.SP.800-83r1
https://doi.org/10.6028/NIST.SP.800-88r1
https://doi.org/10.6028/NIST.SP.800-92
https://doi.org/10.6028/NIST.SP.800-100
https://doi.org/10.6028/NIST.SP.800-113
https://doi.org/10.6028/NIST.SP.800-114r1
https://doi.org/10.6028/NIST.SP.800-114r1
https://doi.org/10.6028/NIST.SP.800-121r2
https://doi.org/10.6028/NIST.SP.800-128
https://doi.org/10.6028/NIST.SP.800-128
https://doi.org/10.6028/NIST.SP.800-137
https://doi.org/10.6028/NIST.SP.800-137
https://doi.org/10.6028/NIST.SP.800-147
https://csrc.nist.gov/publications/detail/sp/800-155/draft
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Appendix C—Acronyms and Abbreviations 

Selected acronyms and abbreviations used in this paper are defined below. 

AES Advanced Encryption Standard 

API Application Programming Interface 

AUFS Advanced Multi-Layered Unification Filesystem 

BIOS Basic Input/Output System 

BYOD Bring Your Own Device 

cgroup Control Group 

CIS Center for Internet Security 

CMVP Cryptographic Module Validation Program 

CVE Common Vulnerabilities and Exposures 

CVSS Common Vulnerability Scoring System 

DevOps Development and Operations 

DNS Domain Name System 

FIPS Federal Information Processing Standards 

FIRST Forum for Incident Response and Security Teams 

FISMA Federal Information Security Modernization Act 

FOIA Freedom of Information Act 

GB Gigabyte 

I/O Input/Output 

IP Internet Protocol 

IPS Intrusion Prevention System 

IT Information Technology 

ITL Information Technology Laboratory 

LXC Linux Container 

MAC Mandatory Access Control 

NIST National Institute of Standards and Technology 

NTFS NT File System 

OMB Office of Management and Budget 

OS Operating System 

PIV Personal Identity Verification 
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RTM Root of Trust for Measurement 

SDN Software-Defined Networking 

seccomp Secure Computing 

SIEM Security Information and Event Management 

SP Special Publication 

SQL Structured Query Language 

SSH Secure Shell 

SSL Secure Sockets Layer 

TLS Transport Layer Security 

TPM Trusted Platform Module 

URI Uniform Resource Identifier 

US United States 

USCIS United States Citizenship and Immigration Services 

VM Virtual Machine 

VPN Virtual Private Network 

WAF Web Application Firewall 
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Appendix D—Glossary 

Application 
virtualization 

A form of virtualization that exposes a single shared operating system 
kernel to multiple discrete application instances, each of which is kept 
isolated from all others on the host. 

Base layer The underlying layer of an image upon which all other components are 
added. 

Container A method for packaging and securely running an application within an 
application virtualization environment. Also known as an application 
container or a server application container. 

Container runtime The environment for each container; comprised of binaries coordinating 
multiple operating system components that isolate resources and resource 
usage for running containers. 

Container-specific 
operating system 

A minimalistic host operating system explicitly designed to only run 
containers. 

Filesystem 
virtualization 

A form of virtualization that allows multiple containers to share the same 
physical storage without the ability to access or alter the storage of other 
containers. 

General-purpose 
operating system 

A host operating system that can be used to run many kinds of 
applications, not just applications in containers. 

Host operating 
system 

The operating system kernel shared by multiple applications within an 
application virtualization architecture. 

Image A package that contains all the files required to run a container. 

Isolation The ability to keep multiple instances of software separated so that each 
instance only sees and can affect itself. 

Microservice A set of containers that work together to compose an application. 

Namespace 
isolation 

A form of isolation that limits which resources a container may interact 
with. 

Operating system 
virtualization 

A virtual implementation of the operating system interface that can be 
used to run applications written for the same operating system. [from [1]] 
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Orchestrator A tool that enables DevOps personas or automation working on their 
behalf to pull images from registries, deploy those images into containers, 
and manage the running containers. Orchestrators are also responsible for 
monitoring container resource consumption, job execution, and machine 
health across hosts. 

Overlay network A software-defined networking component included in most orchestrators 
that can be used to isolate communication between applications that share 
the same physical network. 

Registry A service that allows developers to easily store images as they are created, 
tag and catalog images for identification and version control to aid in 
discovery and reuse, and find and download images that others have 
created. 

Resource 
allocation 

A mechanism for limiting how much of a host’s resources a given 
container can consume. 

Virtual machine A simulated environment created by virtualization. [from [1]] 

Virtualization The simulation of the software and/or hardware upon which other 
software runs. [from [1]] 

  



NIST SP 800-190  APPLICATION CONTAINER SECURITY GUIDE 
    

50 

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-190 

 

Appendix E—References 

[1] NIST Special Publication (SP) 800-125, Guide to Security for Full Virtualization 
Technologies, National Institute of Standards and Technology, Gaithersburg, 
Maryland, January 2011, 35pp. https://doi.org/10.6028/NIST.SP.800-125.  

[2] Docker, https://www.docker.com/ 

[3] rkt, https://coreos.com/rkt/  

[4] CoreOS Container Linux, https://coreos.com/os/docs/latest  

[5] Project Atomic, http://www.projectatomic.io  

[6] Google Container-Optimized OS, https://cloud.google.com/container-optimized-
os/docs/  

[7] Open Container Initiative Daemon (OCID), https://github.com/kubernetes-
incubator/cri-o 

[8] Jenkins, https://jenkins.io  

[9] TeamCity, https://www.jetbrains.com/teamcity/  

[10] Amazon EC2 Container Registry (ECR), https://aws.amazon.com/ecr/ 

[11] Docker Hub, https://hub.docker.com/  

[12] Docker Trusted Registry, https://hub.docker.com/r/docker/dtr/  

[13] Quay Container Registry, https://quay.io  

[14] Kubernetes, https://kubernetes.io/ 

[15] Apache Mesos, http://mesos.apache.org/ 

[16] Docker Swarm, https://github.com/docker/swarm 

[17] NIST Special Publication (SP) 800-154, Guide to Data-Centric System Threat 
Modeling (Draft), National Institute of Standards and Technology, Gaithersburg, 
Maryland, March 2016, 25pp. https://csrc.nist.gov/publications/detail/sp/800-
154/draft.   

[18] Common Vulnerability Scoring System v3.0: Specification Document, Forum for 
Incident Response and Security Teams (FIRST). 
https://www.first.org/cvss/specification-document.   

https://doi.org/10.6028/NIST.SP.800-125
https://www.docker.com/
https://coreos.com/rkt/
https://coreos.com/os/docs/latest
http://www.projectatomic.io/
https://cloud.google.com/container-optimized-os/docs/
https://cloud.google.com/container-optimized-os/docs/
https://github.com/kubernetes-incubator/cri-o
https://github.com/kubernetes-incubator/cri-o
https://jenkins.io/
https://www.jetbrains.com/teamcity/
https://aws.amazon.com/ecr/
https://hub.docker.com/
https://hub.docker.com/r/docker/dtr/
https://quay.io/
https://kubernetes.io/
http://mesos.apache.org/
https://github.com/docker/swarm
https://csrc.nist.gov/publications/detail/sp/800-154/draft
https://csrc.nist.gov/publications/detail/sp/800-154/draft
https://www.first.org/cvss/specification-document


NIST SP 800-190  APPLICATION CONTAINER SECURITY GUIDE 
    

51 

This publication is available free of charge from
: https://doi.org/10.6028/N

IS
T.S

P
.800-190 

 

[19] NIST Special Publication (SP) 800-111, Guide to Storage Encryption Technologies 
for End User Devices, National Institute of Standards and Technology, Gaithersburg, 
Maryland, November 2007, 40pp. https://doi.org/10.6028/NIST.SP.800-111.  

[20] CIS Docker Benchmark, Center for Internet Security (CIS). 
https://www.cisecurity.org/benchmark/docker/.  

[21] Security Enhanced Linux (SELinux), https://selinuxproject.org/page/Main_Page   

[22] AppArmor, http://wiki.apparmor.net/index.php/Main_Page  

[23] NIST Special Publication (SP) 800-123, Guide to General Server Security, National 
Institute of Standards and Technology, Gaithersburg, Maryland, July 2008, 53pp. 
https://doi.org/10.6028/NIST.SP.800-123  

[24] NIST Special Publication (SP) 800-164, Guidelines on Hardware-Rooted Security in 
Mobile Devices (Draft), National Institute of Standards and Technology, 
Gaithersburg, Maryland, October 2012, 33pp. 
https://csrc.nist.gov/publications/detail/sp/800-164/draft.  

[25] NIST Special Publication (SP) 800-147, BIOS Protection Guidelines, National 
Institute of Standards and Technology, Gaithersburg, Maryland, April 2011, 26pp. 
https://doi.org/10.6028/NIST.SP.800-147.  

[26] NIST Special Publication (SP) 800-155, BIOS Integrity Measurement Guidelines 
(Draft), National Institute of Standards and Technology, Gaithersburg, Maryland, 
December 2011, 47pp. https://csrc.nist.gov/publications/detail/sp/800-155/draft.  

[27] NIST Internal Report (IR) 7904, Trusted Geolocation in the Cloud: Proof of Concept 
Implementation, National Institute of Standards and Technology, Gaithersburg, 
Maryland, December 2015, 59 pp. https://doi.org/10.6028/NIST.IR.7904.  

[28] NIST Special Publication (SP) 800-61 Revision 2, Computer Security Incident 
Handling Guide, National Institute of Standards and Technology, Gaithersburg, 
Maryland, August 2012, 79 pp. https://doi.org/10.6028/NIST.SP.800-61r2.  

[29] NIST Special Publication (SP) 800-53 Revision 4, Security and Privacy Controls for 
Federal Information Systems and Organizations, National Institute of Standards and 
Technology, Gaithersburg, Maryland, April 2013 (including updates as of January 
15, 2014), 460pp. https://doi.org/10.6028/NIST.SP.800-53r4. 

[30] Framework for Improving Critical Infrastructure Cybersecurity Version 1.0, 
National Institute of Standards and Technology, Gaithersburg, Maryland, February 
12, 2014. https://www.nist.gov/document-3766. 

 

https://doi.org/10.6028/NIST.SP.800-111
https://www.cisecurity.org/benchmark/docker/
https://selinuxproject.org/page/Main_Page
http://wiki.apparmor.net/index.php/Main_Page
https://doi.org/10.6028/NIST.SP.800-123
https://csrc.nist.gov/publications/detail/sp/800-164/draft
https://doi.org/10.6028/NIST.SP.800-147
https://csrc.nist.gov/publications/detail/sp/800-155/draft
https://doi.org/10.6028/NIST.IR.7904
https://dx.doi.org/10.6028/NIST.SP.800-61r2
https://doi.org/10.6028/NIST.SP.800-53r4
https://www.nist.gov/document-3766

	NIST Special Publication 800-190, Application Container Security Guide
	Executive Summary
	1 Introduction
	1.1 Purpose and Scope
	1.2 Document Structure

	2 Introduction to Application Containers 
	2.1 Basic Concepts for Application Virtualization and Containers
	2.2 Containers and the Host Operating System
	2.3 Container Technology Architecture
	2.3.1 Image Creation, Testing, and Accreditation
	2.3.2 Image Storage and Retrieval
	2.3.3 Container Deployment and Management

	2.4 Container Uses

	3 Major Risks for Core Components of Container Technologies 
	3.1 Image Risks
	3.1.1 Image vulnerabilities
	3.1.2 Image configuration defects
	3.1.3 Embedded malware
	3.1.4 Embedded clear text secrets
	3.1.5 Use of untrusted images

	3.2 Registry Risks
	3.2.1 Insecure connections to registries
	3.2.2 Stale images in registries
	3.2.3 Insufficient authentication and authorization restrictions

	3.3 Orchestrator Risks
	3.3.1 Unbounded administrative access
	3.3.2 Unauthorized access 
	3.3.3 Poorly separated inter-container network traffic
	3.3.4 Mixing of workload sensitivity levels
	3.3.5 Orchestrator node trust

	3.4 Container Risks
	3.4.1 Vulnerabilities within the runtime software
	3.4.2 Unbounded network access from containers
	3.4.3 Insecure container runtime configurations
	3.4.4 App vulnerabilities
	3.4.5 Rogue containers

	3.5 Host OS Risks
	3.5.1 Large attack surface 
	3.5.2 Shared kernel
	3.5.3 Host OS component vulnerabilities
	3.5.4 Improper user access rights
	3.5.5 Host OS file system tampering


	4 Countermeasures for Major Risks
	4.1 Image Countermeasures
	4.1.1 Image vulnerabilities
	4.1.2 Image configuration defects
	4.1.3 Embedded malware
	4.1.4 Embedded clear text secrets
	4.1.5 Use of untrusted images

	4.2 Registry Countermeasures
	4.2.1 Insecure connections to registries
	4.2.2 Stale images in registries
	4.2.3 Insufficient authentication and authorization restrictions

	4.3 Orchestrator Countermeasures
	4.3.1 Unbounded administrative access
	4.3.2 Unauthorized access
	4.3.3 Poorly separated inter-container network traffic
	4.3.4 Mixing of workload sensitivity levels 
	4.3.5 Orchestrator node trust

	4.4 Container Countermeasures
	4.4.1 Vulnerabilities within the runtime software
	4.4.2 Unbounded network access from containers
	4.4.3 Insecure container runtime configurations
	4.4.4 App vulnerabilities
	4.4.5 Rogue containers

	4.5 Host OS Countermeasures
	4.5.1 Large attack surface 
	4.5.2 Shared kernel
	4.5.3 Host OS component vulnerabilities
	4.5.4 Improper user access rights
	4.5.5 Host file system tampering

	4.6 Hardware Countermeasures

	5 Container Threat Scenario Examples
	5.1 Exploit of a Vulnerability within an Image
	5.2 Exploit of the Container Runtime
	5.3 Running a Poisoned Image

	6 Container Technology Life Cycle Security Considerations 
	6.1 Initiation Phase
	6.2 Planning and Design Phase
	6.3 Implementation Phase
	6.4 Operations and Maintenance Phase
	6.5 Disposition Phase


	7 Conclusion
	Appendix A— NIST Resources for Securing Non-Core Components
	Appendix B— NIST SP 800-53 and NIST Cybersecurity Framework Security Controls Related to Container Technologies 
	Appendix C— Acronyms and Abbreviations
	Appendix D— Glossary
	Appendix E— References


