

### Study Design Considerations and Thoughts on Best Practice for Nonclinical Physical Dependence/Withdrawal

Thomas J. Hudzik, Ph.D Safety Pharmacology - GSK Collegeville, PA

### Salient Points for Regulatory Studies

- FDA expressed desire to elevate physical dependence to be applied to all CNS drugs, regardless of whether abuse liability is likely
  - Safety signal, nevertheless
- Our preclinical measures miss drugs that produce discontinuation syndrome in clinic (e.g., SSRIs)
- The standard physiology measures in an FOB capture a lot of what FDA are interested in, but
- Recent direct CSS feedback: FOB only looks at a narrow slice in time (want >= 15 min observation period per rat), and may not capture all of the signs

# Example Drug Classes with poorly Cross Company Abuse Liability Council predicted discontinuation syndrome

| Drug Class                 | Clinical Signs in Discontinuation                              |
|----------------------------|----------------------------------------------------------------|
| Psychomotor Stimulants     | Somnolence, drug craving, anxiety, cognitive disruption        |
| CNS Depressants            | Anxiety, sleep disturbance                                     |
| SSRI/SNRIs/TCAs            | Sensory disturbances, Anxiety, Sleep disturbance               |
| Antipsychotics             | Super-sensitivity psychosis                                    |
| Cannabinoids, Cannabidiol? | Sleep disturbance, anxiety, irritability                       |
| Caffeine                   | Headache, lethargy                                             |
| Nicotine                   | Sleep disturbance, anxiety, irritability, cognitive disruption |

### How to Best Address?

- At least several means possible
  - Specifically look within the physiology of the target
    - Evidence of physiology moving in direction opposite to the pharmacology upon withdrawal?
  - Look for more generic, widely applicable endpoints
  - Use telemetry and do continuous monitoring of physiology, behavior



### Opposing Pharmacology and Physiology

| Drug        | Direct pharmacologic effect       | Observation in withdrawal                                                                  |
|-------------|-----------------------------------|--------------------------------------------------------------------------------------------|
| Diazepam    | Hypoactivity, anxiolysis          | Hyperactivity, anxiety                                                                     |
| Amphetamine | Elevated body temperature         | Lowered body temperature                                                                   |
| Morphine    | Analgesia, Euphoria               | Hyperalgesia, dysphoria                                                                    |
| Clonidine   | Hypotension                       | Hypertension                                                                               |
| Aspirin     | Reduced platelet aggregation      | Increased fibrinogen binding to platelets Increased platelet aggregation. Thrombosis risk. |
| Stimulants  | Appetite Suppression,<br>Euphoria | Hyperphagia, dysphoria                                                                     |

# Example Drug Classes with poorly Cross Company Abuse Liability Council predicted discontinuation syndrome

| Drug Class                 | Clinical Signs in Discontinuation                              |
|----------------------------|----------------------------------------------------------------|
| Psychomotor Stimulants     | Somnolence, drug craving, anxiety, cognitive disruption        |
| CNS Depressants            | Anxiety, sleep disturbance                                     |
| SSRI/SNRIs/TCAs            | Sensory disturbances, Anxiety, Sleep disturbance               |
| Antipsychotics             | Super-sensitivity psychosis                                    |
| Cannabinoids, Cannabidiol? | Sleep disturbance, anxiety, irritability                       |
| Caffeine                   | Headache, lethargy                                             |
| Nicotine                   | Sleep disturbance, anxiety, irritability, cognitive disruption |

### Any Patterns Emerging?

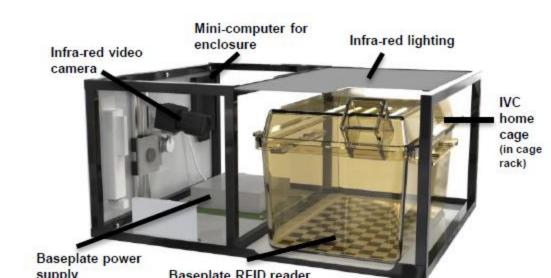
| Drug Class                 | Clinical Signs in Discontinuation                              |
|----------------------------|----------------------------------------------------------------|
| Psychomotor Stimulants     | Somnolence, drug craving, anxiety, cognitive disruption        |
| CNS Depressants            | Anxiety, sleep disturbance                                     |
| SSRI/SNRIs/TCAs            | Sensory disturbances, Anxiety, Sleep disturbance               |
| Antipsychotics             | Super-sensitivity psychosis                                    |
| Cannabinoids, Cannabidiol? | Sleep disturbance, anxiety, irritability                       |
| Caffeine                   | Headache, lethargy                                             |
| Nicotine                   | Sleep disturbance, anxiety, irritability, cognitive disruption |

## Additional Behavioral Endpoints for Consideration








| Spontaneous Behavior           | Elicited Behavior                    | Learned Behavior                                  |
|--------------------------------|--------------------------------------|---------------------------------------------------|
| Spontaneous LMA                | Startle Reflex                       | Operant Behavior (eg. fixed ratio)                |
| Wheel-running                  | Nociceptive response                 | Operant Behavior (fine motor / timing)            |
| Feeding (preferred foods)      | Forced Swim                          | Conditioned place aversion                        |
| Nest building                  | Elevated + Maze                      | Repeated LMA (habituation)                        |
| Ultrasonic Vocalizations       | Ultrasonic Vocalization under stress | Operant Behavior : motivation (Progressive ratio) |
| Continuous, Circadian activity | Aggression                           | ICSS                                              |

### Wheel Running Behavior

- Different from spontaneous LMA
  - Does not habituate
  - Behaves as a reinforcer (so can reflect motivational state)
  - Easy to quantify continuously over a study duration or can do limited access periods
  - There is a circadian pattern
  - Applicable to rats and mice
- Validation Needed

### Continuous Video Capture and Analysis

- A number of commercial systems available
- Differ in terms of resolution, whether group or individual housing, accuracy of behavioural assessment
  - Amount of manual video analysis needed
- Circadian pattern
- Validation needed



### Summary

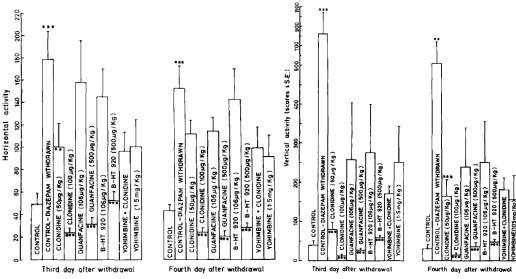
- Conduct standard FOB, but
- Look for physiological or behavioral endpoints which reflect opposing or otherwise relevant pharmacology
  - If already within the FOB, amplify resolution of measurements
  - Apply or add in additional measures as necessary
- Use longer sampling times, continuous measurements preferred
- Consider utilizing types of measurements may reflect the more pervasive signs (fatigue, anhedonia, sleep/circadian disruption

### Question For FDA

- Do you see these suggested, additional endpoints as potentially adding value?
- Should we work toward standardization of ancillary methods?
- Additional Suggestions?
- Risks?

# CCALC Cross Company Abuse Liability Council

### Backups


### FOB/CNS Obs Editorial Comment

- Numerous Endpoints Physiologic and behavioral
- Each animal handled / observed for a brief period of time (3mins).
  - Like a brief neurological / mental status exam
  - FDA specifically requested minimum of 15 min obs per animal.
    - · Unlikely to yield more info, but good to know if only method being used

### Physical Dependence Studies Endpoints

### Possible Endpoints:

- locomotor activity; increase activity (diazepam)



Drug treatment schedule. On completion of chronic treatment with diazepam for 3 weeks, the rats were divided into different groups for drug treatment and each group consisted of a minimum of five animals.

Fig. 2. Effect of clonidine, guanfacine, B-HT 920 and modification of clonidine (100  $\mu$ g/kg) effect by yohimbine (1.5 mg/kg) on horizontal activity of rats on the 3rd and 4th day of diazepam withdrawal measured in a photoactometer for a period of 10 min (\*\* P < 0.025; \*\*\* P < 0.005). Each bar represents mean  $\pm$  SE of aminimum of five observations

Psychopharmacology (1986) 90:198-202

### Physical Dependence Studies Endpoints

### Possible Endpoints:

- locomotor activity; decreased activity (morphine)

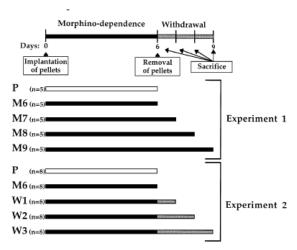
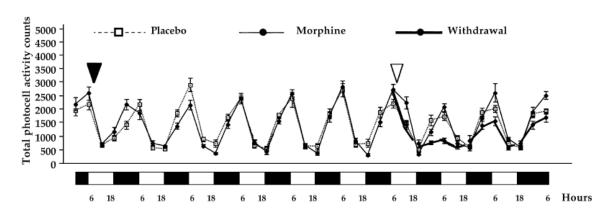
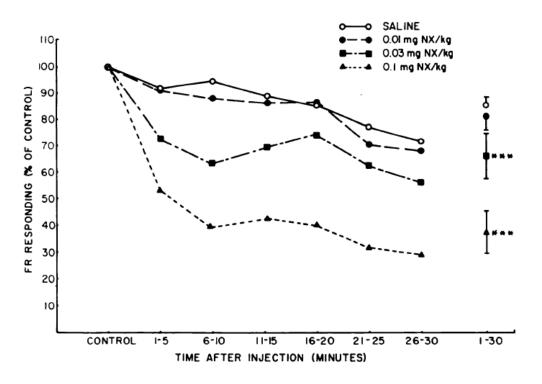



FIG. 1. Experimental schedule for Experiments 1 and 2. P indicates the placebo treatment. M6, M7, M8 and M9 are the 6-, 7-, 8- and 9-day treatments with morphine, respectively, W1, W2 and W3 indicate morphine withdrawal states following 1, 2 or 3 days of abstinence, respectively. The results for the M6 group were duplicated as they were needed in both sets of experiments.





Fig. 2. Time course of total motor activity (total photocell activity counts per 6-h period) recorded in rectangular activity cages during the 9 days following implantation of the pellets (black arrowhead). Placebo-treated rats (n = 8): black circles and thins solid lines. Chronic morphine-treated rats (n = 8): black circles and thin solid lines. Abstinent rats (n = 8) white arrowhead indicate removal of the pellets (black circle and thick solid lines). The spontaneous locomotor activity of morphine-dependent rats was similar to that of placebo-treated rats, but it was disrupted during the first and second days of withdrawal.

1999 European Neuroscience Association. European Journal of Neuroscience, 11, 481-490

# Physical Dependence Studies Endpoints

### Possible Endpoints:

- instrumental behaviour: operant lever pressing for food



Naloxone-induced morphine withdrawal

### Behavioral Sensitivity > Somatic for Opioids

# Relative Sensitivity to Naloxone of Multiple Indices of Opiate Withdrawal: A Quantitative Dose-Response Analysis<sup>1,2</sup>

GERY SCHULTEIS, ATHINA MARKOU, LISA H. GOLD, LUIS STINUS and GEORGE F. KOOB

Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California (G.S., A.M., L.H.G., G.F.K.) and Psychobiologies des Comportments Adaptatifs, INSERM, Unité 259, Bordeaux, France (L.S.)

Accepted for publication August 31, 1994

0022-3565/94/2713-1391\$03.00/0
THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS
Copyright © 1994 by The American Society for Pharmacology and Experimental Therapeutics
JPET 271:1391-1398, 1994

But every mechanism can be different

### Pharmacology vs Withdrawal: When Opponent-Process Applies Cross Company Abuse Liability Council

| Opioid Pharmacology    | Withdrawal                      |
|------------------------|---------------------------------|
| Decreased GI Mobility  | Cramping, GI distress, diarrhea |
| Analgesia              | Hyperalgesia                    |
| Euphoria               | Dysphoria                       |
| Sedative Pharmacology  | Withdrawal                      |
| Sleep Induction        | Insomnia                        |
| Anticonvulsant effects | Convulsion                      |
| Anxiolysis             | Anxiety                         |
| Stimulant Pharmacology | Withdrawal                      |
| Euphoria               | Depression, dysphoria           |
| Appetite suppression   | Hyperphagia                     |
| Motor stimulation      | Motor suppression               |

There are behavioral signs which appear to be more pervasive across classes such as fatigue, stress, sleep disturbance, malaise; but are more difficult to quantify.

### Typical Study Design



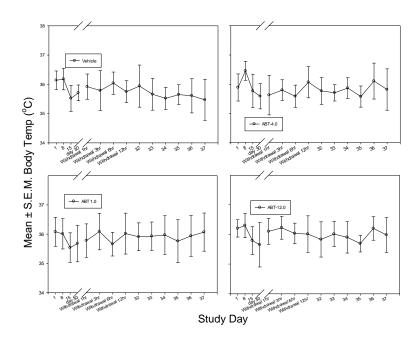
|             | re-dose<br>aseline         | Dosing F          | hase | Withdr  | awal  |     |
|-------------|----------------------------|-------------------|------|---------|-------|-----|
| Bwt         | 1-2 days prior             | Daily             |      | Daily   |       |     |
| Clin<br>Obs | X                          | Daily             |      | Daily   |       |     |
| 10 sec co   | age-side<br>X<br>servation | X<br>(Early, Mid) | X    | X       | X     | X   |
| LMA         | X                          | X                 | X    | (day 1, | 2fina | ıl) |

#### **CCALC**

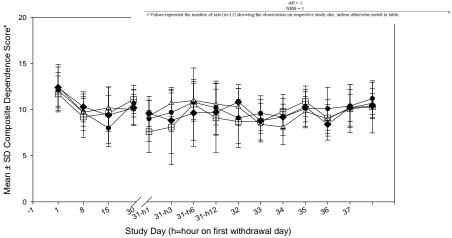
#### Cross Company Abuse Liability Council

(continued) CNS Observations in Male Sprague Dawley Rats to Assess the Physical Dependence and Withdrawal from A-913958.46, Study 8263237

### **Typical Study Outcome**


#### Table 1: CNS Observations During the Dosing Phase

#### Table 1: CNS Observations in Male Sprague Dawley Rats to Assess the Physical Dependence and Withdrawal from A-913958.46, Study 8263237


| ↑A = increased activity     | N = normal                       |
|-----------------------------|----------------------------------|
| AGH = aggressive to handler | RE = increased response to stimu |
| TEP = accome remones        | V = increased recollection       |

| ↑IR = Irritability     |                   |                   |  |
|------------------------|-------------------|-------------------|--|
|                        | Time Point / O    | bservation*       |  |
| Day 1                  | Day 1             | Day 1             |  |
| 1 hour post dose       | 3 hours post dose | 6 hours post dose |  |
| 0.0 mg/kg vehicle      |                   |                   |  |
| N = 10                 | N = 11            | N = 12            |  |
| ↑ER = 1                | ↑V = 1            |                   |  |
| ↑RE = 1                |                   |                   |  |
| ↑V = 1                 |                   |                   |  |
| 3 mg/kg A-913958.46    |                   |                   |  |
| N = 11                 | N = 11            | N = 11            |  |
| ↑IR = 1                | ↑v = 1            | ↑RE = 1           |  |
| ↑V = 1                 |                   |                   |  |
| 10 mg/kg A-913958.46   |                   |                   |  |
| N = 8                  | N = 11            | N = 11            |  |
| ↑RE = 3                | ↑v = 1            | ↑A = 1            |  |
| AGH = 1                |                   | ↑RE = 1           |  |
| 15 mg/kg d-Amphetamine |                   |                   |  |
| N = 7                  | ↑RE =5            | N = 5             |  |
| ↑RE = 3                | ↑A = 4            | ↑RE = 5           |  |
| ↑A = 2                 | N = 3             | ↑A = 2            |  |
| ↑V = 1                 | ↑v = 2            |                   |  |
|                        | ↑ER = 1           |                   |  |

a Values represent the number of rats (n=12) showing the observation on respective study day, unless otherwise noted in table.



#### ↑A = increased activity AGH = aggressive to handler AL = alert IR = irritability Reddish left ear = Left ear pinna vascular (reddish) N = normalAD = apprehensive EB = eye blinking ELRB = eye lacrimation reddish-brown material NRB = reddish-brown material found around the nose RE = increased response to stimuli ST head movement = stereotypy head movement ↑V/V = vocalization 1 hour post dos 3 hours post dos 6 hours post dose 0.0 mg/kg vehicle 3 mg/kg A-913958.46 N = 9 $\uparrow V = 2$ AGH = 1N = 7 $\uparrow A = 4$ NRB = 3 $\uparrow V = 2$ N = 7 TRE = 2 TV = 2 AL = 1 ELRB = 1 NRB = 1 ELRB = 1AL = 1 EB = 1 IR = 1 Reddish left ear = 10 mg/kg A-913958.46 N = 5 $\uparrow ER = 2$ ST head = 2 $\uparrow V = 2$ AP = 1N = 8 ↑RE = 3 ELRB = 1 N = 9 ↑ER =2 ST head = 2

