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A Statistical Method to Construct Confidence
Sets on Carrion Insect Age from Development

Stage
Lynn R. LaMotte , Amanda L. Roe, Jeffrey D. Wells, and

Leon G. Higley

The age of a carrion insect associated with a corpse may represent a minimum post-
mortem interval. No method has been proposed before for constructing a confidence
set on age based on development stage modeled as a categorical response. This paper
illustrates the application of exact p values, first developed for succession data, to con-
struct a confidence set on a carrion insect’s age based only on its development stage. It
uses published development data for Lucilia sericata, with individuals reared at different
temperatures pooled into sets of similar age as indexed in accumulated degree hours.
Rates of coverage of true ages, assessed using each insect as a singleton holdout sample,
were greater than the nominal 95% level.

Key Words: Calibration; Inverse prediction; Categorical response; Outlier detection;
Forensic entomology; Lucilia sericata.

1. INTRODUCTION

Acommon forensic entomological analysis involves estimating the age of a carrion insect
associated with a corpse (Catts 1990). If circumstances suggest, as is usually the case, that
the individual insect specimen was deposited by its mother on the victim following death,
then the implication is that the victim was dead for a time period at least equal to, but
perhaps greater than, the age of the insect specimen. Catts (1990) referred to this concept as
a minimal postmortem interval, nowmore commonly referred to as a minimum postmortem
interval (PMImin) (see Goff 1993; Amendt et al. 2007; Villet et al. 2010).

An analyst should be able to objectively express the uncertainty concerning any forensic
science conclusion (National Research Council 2009). When statistical methods are used,
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this takes the form of levels of significance or levels of confidence. Methods have been
proposed for calculating confidence limits for an insect specimen’s age based on a continuous
quantitative response(s) such as body length or weight (see Wells and LaMotte 1995; Ieno
et al. 2010; Baque et al. 2015; LaMotte and Wells 2015, 2016). However, size can vary
considerably between individuals of the same age (Wells and LaMotte 2001), and body
length is influenced by specimen preservationmethod (Tantawi andGreenberg 1993; Adams
and Hall 2003; Midgley and Villet 2009). For such reasons, a forensic entomologist may
need to estimate age based only on development stage, which is categorical (see Dadour
et al. 2001; Gaudry et al. 2001, and Huntington and Higley 2008).

No probability-based statistical methodology has been proposed for inferring carrion
insect age from a categorical response such as development stage. (It has been used as
a predictor, but not as a response (Ieno et al. 2010).) LaMotte and Wells (2000) devised
an exact method for a similar setting, inferring the time interval a corpse was exposed to
carrion insects based on species occurrence data. In this paper, we will show how the exact
probability basis derived there can be applied to construct confidence sets on PMImin based
on categories of insect development.

The data for this illustration are particularly important to forensic entomology. They
come from the large development study by Roe and Higley (2015) on Lucilia sericata,
a species of carrion-feeding fly that is important in forensic applications. We assess the
statistical performance of this approach in terms of the confidence sets’ coverage rates, both
of the true value and of false values, using each subject in the data set as a singleton holdout
sample.

2. MATERIALS AND METHODS

2.1. DEVELOPMENT DATA

We used the Lucilia sericata development data recently published by Roe and Higley
(2015). In that study, for most of the temperature–age combinations examined, four rearing
cups each with approximately 20 eggs of equal age (cohorts) were assembled. More than
four cohorts were observed for some of the oldest sampling ages, and the surplus ones were
used to observe adult emergence. Because of pre-sampling mortality, sample sizes tended
to decrease with age. There were 1024 cups from the 239 age-temperature combinations.
The complete data set includes development stages of 11703 individual Lucilia sericata
specimens at 239 distinct combinations of eleven incubator temperatures and 197 ages
(rounded to hours since oviposition).

2.2. POOLING OBSERVATIONS BY AGE IN ACCUMULATED DEGREE HOURS

(ADH)

The effect of temperature on blow fly development rate with age is profound. The com-
bined effects of age and temperature on development may be modeled in terms of a single
index, accumulated degree hours (ADH) (Catts 1990). Calculating ADH requires a temper-
ature threshold, and we selected 10◦C because it is within the range of values estimated for
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L. sericata (Roe and Higley 2015;Wall et al. 1992). For the analyses reported here, we com-
bined data by groups of specimens within brackets of ADH. We also excluded observations
at the highest and lowest rearing temperatures (7.5 and 32.5◦C).

Although some of the 201 distinct ADHs in the data set corresponded to multiple temper-
atures, many had numbers (n) of insect specimens, combined over cups and temperatures,
that were too low for this kind of analysis. For example, with four categories of development
stages, it is not possible to detect a difference at the 5% level of significance unless n ≥ 22;
for six categories, unless n ≥ 37 (LaMotte and Wells 2000). To avoid so many with small
sample sizes, we combined ADHs into brackets (disjoint ranges of values) such that the
greatest in a bracket was not more than 6% greater than the least (see Table 3).

2.3. DEFINITION OF CATEGORIES OF DEVELOPMENT STAGES

Roe andHigley (2015) designated development stages into fifteen categories, from egg to
adult.We considered two less refined categorizations, to four and six stages. For presentation
here, we excluded postfeeding stages and combined the younger stages into four categories.
They are designated here and defined as follows: E (egg and pharate first larval instar); L1
(egg hatching, first larval instar, and pharate second larval instar); L2 (first larvalmolt, second
larval instar, and pharate third larval instar); and L3-f (second larval molt and feeding third
larval instar). For casework, the selection of life stages to be covered by the model would
be up to the investigator. The choice of number of development categories or laboratory
temperatures to include does not affect the logic of the methodology illustrated here. We
refer to the assignment of these four stages to specimens as DS (for “developmental stage”)
and to the four categories collectively as DSs.

Roe and Higley’s (2015) purpose was to examine the relationship between develop-
ment rate and temperature, not to support the application we present here. In our concluding
remarks, we discuss aspects of experimental design we think would be helpful for those who
aim to produce an age-predictionmodel. However, the data provide a good example for illus-
trating this statistical method. They are among the most comprehensive yet produced, and
particularly important for statistical inference, the authors employed an unbiased sampling
scheme (Wells et al. 2015).

2.4. STATISTICAL METHODOLOGY

The objective of constructing a confidence set on age fromDS is addressed by computing
a p value comparing the observed mystery specimen (“MS”) DS to the distributions of DSs
for the training data (“TD,” i.e., specimens for which both DS and age are known) in each
of the ADH categories.

This rationale is the same in conventional statistical methods for inverse prediction or
calibration. There, training data are used to fit a model for the quantitative response y in
terms of a quantitative condition x . In its conventional form, the model is linear, e.g.,
y = β0 + xβ1 + ε. Then, given a known response y∗ for which the value x∗ of the
condition is unknown, the objective is to infer what values of x could reasonably have
yielded y∗. To do so, y∗ is tested as an outlier at the α level of significance (α = 0.05
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here) for each potential value of x∗. Those values of x∗ for which the test does not indi-
cate that y∗ is an outlier comprise a 100(1 − α)% confidence set on the true x∗. (This
follows from Theorem 4 (i) in Lehmann 1986, p. 90.) A value x∗ is in this set if and
only if y∗ is contained in the prediction interval on y at x∗, hence the name of the
method.

In the setting of simple linear regression, under the conventional assumptions of inde-
pendence, homoscedasticity, and normality, the statistical properties of inverse prediction
are straightforward to establish. In particular, the confidence set on x∗ is an interval, and
the probability that it covers the true value is the stated level of confidence. Achievement
of the exact coverage probability is guaranteed by exact p values for the outlier tests; each
potential x∗ is in the confidence set if and only if the corresponding outlier test p value is
≥0.05.

In principle, the same rationale can be used when the response is categorical. The crucial
step is to test the observed MS category of the response as an outlier from the probability
distribution of categories at a given x∗ as estimated with the training data. Exactness of the
p value of that test guarantees the coverage probability of the resulting confidence set on
the unknown condition x∗.

The probabilistic foundation for this exact p value is described in LaMotte and Wells
(2000). Here, the condition corresponding to x∗ is ADH. ADHs for which this p value
is less than 0.05 are rejected as being untenable for the given specimen. The set of ten-
able ADHs (those for which the p value is not less than 0.05) constitutes a 95% confi-
dence set on ADH of the MS. Although 0.05 is the conventional default level of signif-
icance, tables in LaMotte and Wells (2000) enable an investigator to choose other lev-
els.

While we can compare a mystery specimen to the frequency distribution observed at an
ADH represented in the training data, we do not attempt here to impute what the conclusion
would be atADHsnot represented in the training data.Clearly,modeling how the distribution
of stages changes with ADH can be important and useful. But no model is the true model,
and formulating, fitting, and assessingmodels adds layers of arbitrary complexity that would
confound the objective here, which is to illustrate, and assess the performance of, these exact
p values.

The comparison between TD and the MS is in the form of a separate contingency table
for each ADH (or bracket of ADHs) in the training data. A numerical example will serve to
illustrate how a p value is found in this setting. One of the ADH combinations resulted from
cohorts sampled after 79h in the incubator at 22.5◦C, plus 2h at room temperature (20◦C),
which together translate to ADH= 2(20− 10) + 79(22.5− 10) = 1007.5 degree hours. Of
35 specimens from three cohorts (cups), 20 were in stage L2, 15 were in L3, and none was
in E or L1. This frequency distribution, (0, 0, 20, 15) in the four categories, constitutes the
training data at this ADH. Consider a MS that is in the L1 stage. To address the question,
whether it comes from the same probability distribution as the training data (TD) at 1007.5
degree hours, its distribution (0, 1, 0, 0) is compared to the training data distribution in a
4 × 2 contingency table (Table 1).

Conventional methods for computing a p value for comparing the MS frequency distri-
bution to the TD distribution, the Chi-squared test and Fisher’s exact test, are inaccurate
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Table 1. Frequency distributions of 35 training data (TD) specimens and one mystery specimen (MS) over four
development stages (DSs).

DS TD MS

E 0 0
L1 0 1
L2 20 0
L3-f 15 0

The exact p value comparing the MS distribution to the TD distribution is 0.0311.

Table 2. Frequencies for the four DSs (column TD) are those of the 195–200 ADH bracket in the TD shown in
Table 3.

DS TD MS1 MS2 MS3 MS4

E 345 1 0 0 0
L1 34 0 1 0 0
L2 0 0 0 1 0
L3-f 0 0 0 0 1
p value >0.05 >0.05 <0.05 <0.05

Columns MS1–MS4 show frequency distributions of single potential MSs from each of the four DSs.

The p value at the bottom of each column was computed as described in LaMotte and Wells (2000) or using Table
4 with n = 379. With c = 4 DSs, a MS in any DS with TD frequency ≤9 gives a p value <0.05 and leads to
rejection of the MS coming from ADH 195–200.

because the MS sample size is 1. An accurate p value can be computed under the null
hypothesis, that the 35+1 observations are sampled independently from the same 4-category
Bernoulli distribution. LaMotte and Wells (2000) give its mathematical derivation. It is an
exact probability, not an approximation, and so it is not limited by sample size or empty cells.
Although it entails multi-dimensional constrained optimization, they showed that its value
can be computed to within 10−4 by a simple formula that requires only a one-dimensional
optimization. Although there is not a closed-form expression for this probability, the algo-
rithm can be programmed readily. We computed the p values shown in this paper in that
way.

LaMotte andWells (2000) provided a table (their Table 3, extended here in Table 4) to be
used in lieu of the optimization, showing the least TD sample size n such that the training
data frequency of the MS category (x = 0 in Table 1) would result in a p value less than
0.05. From that table, that minimum sample size is 22, and the training data sample size here
is 35, and so we may conclude that the p value is less than 0.05 without actually computing
the p value.

To further illustrate the statistical test, note that each row in Table 3 comprises the training
data column in a contingency table like the one shown in Table 1. As described in the caption
of Table 3, a frequency framed or unframed in Table 3 indicates a mystery specimen DS
that would be rejected or not rejected, respectively, as coming from that ADH or bracket
of ADHs. Table 2 illustrates the four comparisons (one for each DS) for the 195–200 ADH
bracket in Table 3.
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Table 3. Frequency distributions of four DSs among training data specimens within each ADH bracket.

ADH DS n

Bracket E L1 L2 L3-f

100–105 154 0 0 0 154

107–110 402 0 0 0 402

180–190 152 11 0 0 163

195–200 345 34 0 0 379

260–275 63 93 0 0 156

282–290 185 179 0 0 364

320 23 50 0 0 73

360–380 215 233 0 0 448

420 41 34 0 0 75

457–470 201 184 0 0 385

505 29 35 0 0 64

560–585 2 40 47 0 89

595–612 0 70 152 0 222

700–740 0 7 219 0 226

750–755 0 2 62 0 64

840–890 0 0 227 38 265

897 0 0 37 0 37

980–1030 0 0 78 202 280

1040 0 0 28 13 41

1120–1182 0 0 4 310 314

1320–1377 0 0 2 267 269

1520–1610 0 0 0 216 216

1720–1770 0 0 0 123 123

1925–8120 0 0 11 82 93

DSs are E (egg and pharate first larval instar), L1 (egg hatching, first larval instar, and pharate second larval instar),
L2 (first larval molt, second larval instar, and pharate third larval instar), and L3-f (second larval molt and feeding
third larval instar).

Framed numerals (e.g., 0 ) indicate that, for a mystery specimen in that DS, the p value is less than 0.05 for that
ADH bracket.

2.5. ASSESSMENT OF COVERAGE RATES

We assessed the statistical properties of the resulting confidence sets by cross-validation
using each insect specimen as a singleton holdout sample. The DS of each of the insect
specimens was compared to the ADH-wise frequency distributions of stages of the other
(less the holdout) specimens, producing p values for each of the ADH ranges (24 as shown
in Table 3). We tabulated the proportions of insect specimens from each (true) ADH bracket
for which each (true or false) ADH bracket was rejected (the complement of the coverage
rate), as shown in Fig. 1.

Computations were performed using SAS version 9.4 (SAS Institute Inc 2012).
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Figure 1. Results of cross-validation of rejection rates (1 minus coverage rates) of confidence sets on ADH
from DS. Data are shown in Table 3. Each individual in the training data set was used as a holdout sample, and
a confidence set on its ADH was constructed based on the remaining individuals. ADH bracket labels on both
columns and rows are the same as in Table 3. Across each row, the gray bar in each column indicates the proportion
of individuals in that ADH class for which the ADH class of that column was rejected. Diagonal cells, where True
ADH = Test ADH, are indicated by “=” in the middle. A black bar within a diagonal cell (e.g., 1120–1182)
indicates the rejection rate of the true ADH, which occurred for 10 of the 4902 L. sericata specimens. Zoom in to
see detail.

3. RESULTS

3.1. CONFIDENCE SETS AND COVERAGE RATES

Table 3 shows TD frequency distributions of the four DSs by ADH bracket. In each DS
column, whether the p value comparing a MS of that DS to the frequency distribution of
DSs within an ADH bracket is ≤0.05 is indicated by a frame around the frequency. Thus
for an L1 MS, ADHs ≤110 degree hours or ≥840 degree hours are untenable. The 95%
confidence set on ADH for such an insect specimen comprises the ADH brackets between
180–190 degree hours and 750–755 degree hours. In a similar fashion, the confidence set
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for an egg (E) extends from the least bracket, 100–105 degree hours, through 505 degree
hours (see Sect. 4).

Figure 1 portrays rejection rates within each true ADH bracket (horizontal row) for
potential ADH brackets (columns), based on cross-validation in which each insect is a
singleton holdout sample and p values compare its DS to distributions of DSs across all
ADH brackets. Take row 505 ADH from Table 3 as an example: Of its 64 insects 29 were
E and 35 were L1. The first ADH bracket, 100–105 degree hours, is not rejected for any of
the 29 E insects, but it is for all of the 35 L1 insects. The rejection rate for the first ADH
bracket among the 64 insects from 505 ADH is thus 35/64 = 55% that is the height of the
gray bar. As a second example, consider the 64 insects from ADH 750 to 755, with 2 in L1
and 62 in L2. When one of the two in L1 is held out, leaving 63 with one in L1, the p value
for the holdout insect specimen (L1) for its true ADH bracket is less than 0.05 (see Table
4, where the n required for 5% significance when x = 1 is 51, which is less than the 63 left
after taking out the one insect specimen), and so the 95% confidence set for this individual
does not contain its true ADH. The same is true of the second L1 individual, and so the
rejection rate for the true ADH bracket is 2/64 = 3%. This can be seen as the very short
black bar in the 750–755 ADH diagonal cell.

Across a given row in Fig. 1, blank bars show that the column (vertical) ADH bracket was
not rejected for any individual from the row (horizontal) ADH.All ADHbrackets with blank
bars, then, are included in the 95% confidence set for all individuals from the row ADH.
For insect specimens from the row 260–275 ADH, for example, all confidence sets include
ADH brackets 180–190 through 505, and 63/156 = 40% include the first two brackets.

4. DISCUSSION

This illustration shows that the method of LaMotte and Wells (2000) can be used for
statistical inference of ADH (and hence age and PMImin) from DS. Application of this
method for constructing confidence sets on ADH is made simple and accessible by using
Table 3 in LaMotte andWells (2000) or Table 4 in this paper. (Those tables are not identical.
LaMotte and Wells (2000) included fewer categories (c) than shown in Table 4, but it gave
minimum n for rejection at the 1, 5, and 10% levels of significance.) As assessed with
cross-validation here, coverage rates (rejection rates) of true ADHs are greater (less) than
the nominal 95% (5%), and they decrease (increase) for ADHs different from the true value.

Several disclaimers should be made concerning real applications. Although the prob-
ability statements underlying this method apply only to the age intervals in Table 3, we
think conservative inferences can be made about most of the gaps between ADHs. Based
on statistical inference, the only strong conclusion is to reject. Thus, the framed frequencies
in Table 3 indicate that there is statistical evidence against the assertion that the MS came
from that ADH bracket. Unframed frequencies, on the other hand, indicate lack of evidence
to reject, so weak an indication as to be no conclusion at all. There is no statistical basis;
then, to think that an L2 MS, for example, did not come from some ADH between 505
and 1120, exclusive of the endpoints. Indeed, without assuming a model to bridge the ADH
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Table 4. Minimum training data sample size n for a significant difference (at the 5% level) between a single
mystery specimen (MS) and training data (TD) comprising n individuals distributed over c categories.

Minimum sample sizes for 5% significance

x = 0 1 2 3 4 5 6 7 8 9 10

c = 2 n = 7 17 28 39 52 64 77 91 104 118 132
3 15 34 55 78 102 128 153 180 207 235 263
4 22 51 83 117 153 191 230 269 310 351 393
5 29 67 110 156 204 254 306 359 413 468 524
6 37 84 137 195 255 318 382 448 516 584 654
7 44 101 165 234 306 381 458 538 619 701 785
8 52 118 192 272 357 444 535 627 722 818 915
9 59 135 220 311 408 508 611 717 825 934 1046
10 66 151 247 350 459 571 687 806 927 1051 1176
11 74 168 275 389 509 634 763 895 1030 1168 1307
12 81 185 302 428 560 698 840 985 1133 1284 1438
13 88 202 329 467 611 761 916 1074 1236 1401 1568
14 96 219 357 506 662 825 992 1164 1339 1518 1699
15 103 235 384 544 713 888 1068 1253 1442 1634 1829
16 110 252 412 583 764 951 1145 1343 1545 1751 1960

This is an extension of Table 3 in LaMotte and Wells (2000) for the 5% level of significance. The TD frequency in
the MS category is x . For example, suppose c = 4 and the number of TD specimens sampled at a given, specific
age is n. If the TD frequency in the MS’s category is x = 0, then that age is rejected as being the age of the MS if
n ≥ 22; if x = 1, then that age is rejected if n ≥ 51; and so on.

gaps, there is no statistical basis to make any inference about ADHs not represented in the
training data.

There is a statistical basis to assert that an L2 MS did not come from an ADH between
457 and 470, for example. Further, although there is no direct statistical evidence to say
that an L2 MS did not come from, say, ADH 480 (between the two brackets 457–470 and
505), if we surmise that the development process is reasonably smooth in that bracket, then
the assertion that the MS came from ADH 480 would be rejected, too. Within reason and
consideration, gaps between adjacent ADH brackets that were rejected could reasonably
be rejected. Gaps between not-rejected ADH brackets must be regarded as not rejected,
however, reflecting the lack of evidence for rejection.

The surfeit of interpretability in the gaps has implications for the design of the TD exper-
iment. For example, the frequency of E individuals was 29 at 505 degree hours, dropping
to 2 at the next observed ADH group, 560–585 degree hours. In hindsight, for our purposes
brackets between about 195 and 470 degree hours were not necessary to sample, but more
dense sampling around the age of egg eclosion would have helped to more precisely define
the upper limits of the confidence set. Similarly, the upper boundary of stage L3-f is not
distinguished well due to truncating ADH at 8120 degree hours.

Ideally, in each horizontal row of Fig. 1, we would like to see the gray bars squeeze in on
the true ADH group, as shown by the squares along the diagonal, thus trimming down the
possible values of ADH that cannot plausibly be eliminated. The power to reject values is
limited by sample size, and it is the range of sample sizes (from 37 to 448) among the ADH
brackets that accounts for much of the white space and the unevenness of the extent of the
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gray bars. Overall, though, Fig. 1 shows that these interval estimates correspond well with
true ADH. Most important is that they have a foundation in statistical methodology.

It is interesting to note that the rule “reject this ADH if the frequency among the TD of
the MS stage is 0” gives results similar to those shown in Fig. 1. However, this rule would
erroneously reject for any zeroes where the sample size was less than n = 22. It would
fail to reject in those places in Table 3 where the framed frequencies are positive. Such
examples would occur more frequently with greater sample sizes and more dense sampled
ADHs. Finally, this ad hoc rule has no basis in probability, and no level of confidence could
be defensibly attached to the results.

In several instances, there were significant differences (not shown here) among the fre-
quency distributions from different age–temperature combinations at the same ADH. This
indicates that there were effects on development rate not accounted for by ADH.

As noted already, multiple cohorts were observed at each age–temperature combination.
For four cohorts of twenty specimens each, for example, there is the question, whether the
underlying true distributions of stages are the same for all four. We addressed this question
by comparing frequency distributions among cohorts within age–temperature combinations,
and in several instances there were significant differences, but not accounting for multiple-
testing inflation of the level of significance. That the cohorts are not homogeneous cannot be
ruled out. The extent to which this impacts the p values used to construct the confidence sets
on ADH is not known. We have begun to investigate this, and preliminary results indicate
that the p values described in LaMotte and Wells (2000) are accurate under heterogeneity
of this sort.

Anyone designing a carrion insect development experiment should consult the sample
size thresholds in Table 3 in LaMotte and Wells (2000) or Table 4 in this paper. The greater
the sample sizes and the finer the grid of ADHs, the narrower and more continuous the
resulting confidence sets on age are likely to be. Sampling at different temperatures that
produce the same ADHs would maximize sample size as well as provide data to address
whether ADH adequately captures the joint effects of age and temperature. To the extent
possible, age–temperature combinations where transitions between stages occur should be
sampled.
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