SharkFest '16

Cisco ACI and Wireshark

Getting Back Our Data

Karsten Hecker

Senior Technical Instructor | Fast Lane Germany

Current Challenges for SPAN

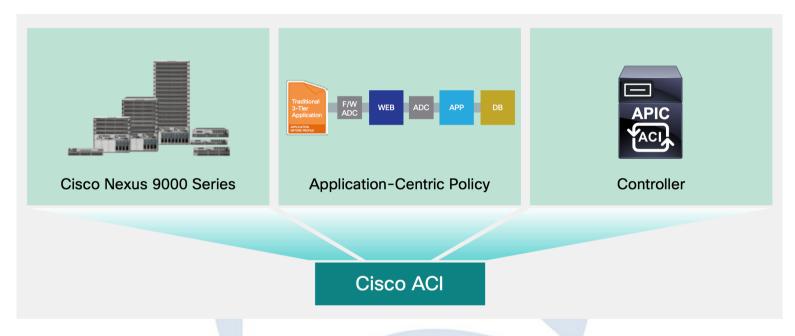
Current Challenges for SPAN

- connect through the CLI
- manually initiate a SPAN session on every required switch in the potential traffic path
- 10 / 40 Gbps
- Link Aggregation (Etherchannel)

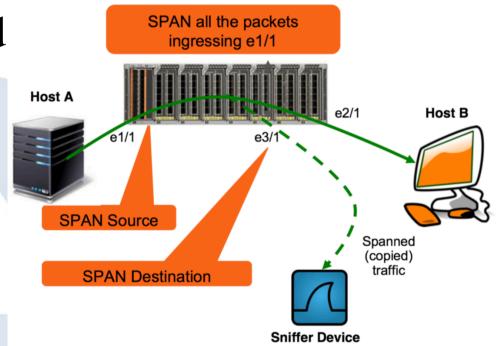
Current Challenges for SPAN

- multitenant, transient data centers
- VMs / containers move between physical hardware outside the control of network engineers
- => traffic path may not be known ahead of time

New SPAN Concept with Cisco ACI

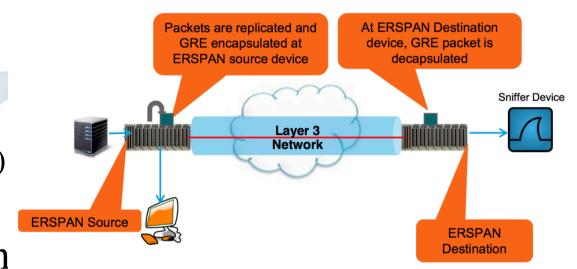

- new layer of policy abstraction
- on top of the switch hardware

• includes the logical networking construct of endpoint groups (EPGs)


• EPGs consume switch hardware resources only when relevant endpoints are present

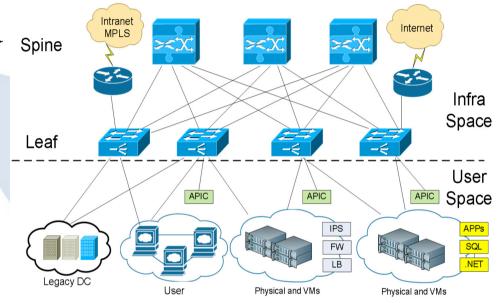
• As workloads move around the data center, the EPG expands and contracts to meet resource needs

Support for Local and Remote Destinations


- Originally SPAN traffic could be mirrored only locally on the switch
- Extensions such as RSPAN and ERSPAN allowed traffic to be encapsulated and sent to a remote switch or device

• Cisco ACI supports local and remote (ERSPAN) destinations in the various types of SPAN

Continued Support for SPAN, RSPAN and ERSPAN


- Cisco ACI thus continues to make available
 - Remote SPAN (RSPAN)
 - Encapsulated RSPAN (ERSPAN)
- virtual workloads need to be spanned directly within a virtual switch (vSwitch)

- Cisco ACI can be paired with Cisco Application Virtual Switch (AVS)
- used to create and manage Virtual SPAN (vSPAN) sessions
- providing a full end-to-end SPAN

How ERSPAN Reaches the Destination

- ERSPAN packets are injected into the destination EPG on the source leaf switch
- outer source address set to the generated IP address
- outer destination IP address set to the destination IP address
- packet then follows the same forwarding path as normal traffic in this EPG

ERSPAN Types I and II

- Cisco ACI uses a "merchant+" methodology
 - Broadcom and Cisco chips combined in one chassis
- Tenant and Access SPAN use Type I (Broadcom chips)
- Fabric SPAN uses Type II (Cisco chips)
- ERSPAN Type I and Wireshark:
 - by default Wireshark will not decode the packets
 - choose, Preferences > Protocols > ERSPAN"
 - select "Force to decode fake ERSPAN frame"

New SPAN Types

SPAN Type Use Cases

Tenant SPAN

• Mirror all traffic to and from an EPG to a remote destination

Fabric SPAN

• Mirror all traffic to and from my spine switches to a remote destination

Access SPAN

 Mirror all traffic to and from leaf host ports locally or to a remote destination

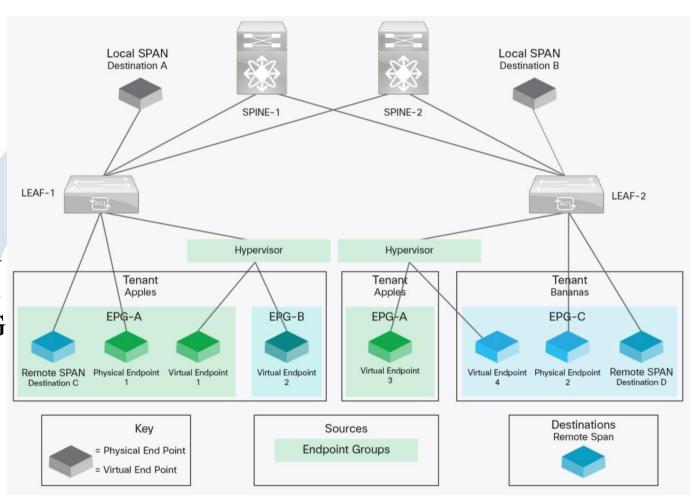
Virtual SPAN

• Mirror a virtual interface on a virtual machine to a remote destination

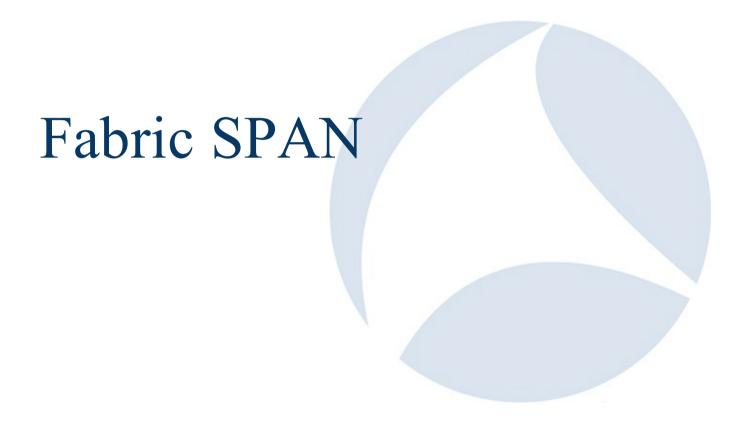
SPAN Type Comparison

SPAN Type	Source	Filter	Destination
Fabric SPAN	Fabric port	Bridge domainPrivate network	Remote (ERSPAN Type II)
Access SPAN	Access port	TenantApplication profileEndpoint group	Remote (ERSPAN Type I)Local
Tenant SPAN	Endpoint group	_	Remote (ERSPAN Type I)
Virtual SPAN	Virtual machine interface	_	 Remote (ERSPAN Type I) LSPAN (virtual machine interface)

Tenant SPAN


- Tenant SPAN aggregates SPAN sessions across multiple leaf switches transparently and on demand
- administrator is free to describe semantically how traffic should be replicated
- Cisco Application Policy Infrastructure Controller (APIC) will command the appropriate hardware resources to initiate SPAN sessions on demand to capture relevant traffic

Tenant SPAN - Main Facts

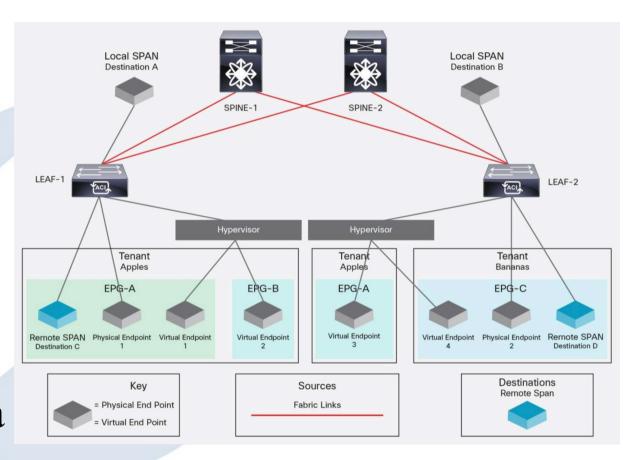

- source can be only an EPG
- destination can be only ERSPAN
 - ERSPAN encapsulation Type I
- direction can be:
 - Inbound
 - Outbound
 - Both
- no filtering is possible

Tenant SPAN - Use Case

- use Tenant SPAN when you:
 - do not know where the physical source is
 - know that you want to capture all traffic in and out of any physical port that belongs to this EPG

SharkFest '16 • Computer History Museum • June 13-16, 2016

Fabric SPAN - Main Facts


- source must be a fabric (uplink) port on a leaf or spine switch
 - 1/49 to 1/60 on Cisco Nexus_® 9396 (leaf switch)
 - 1/49 to 1/54 on Cisco Nexus_® 9372 (leaf switch)
 - 1/1 to 1/36 on Cisco Nexus_® 9336 (spine switch)
- destination can be only ERSPAN
- ERSPAN encapsulation is Type II

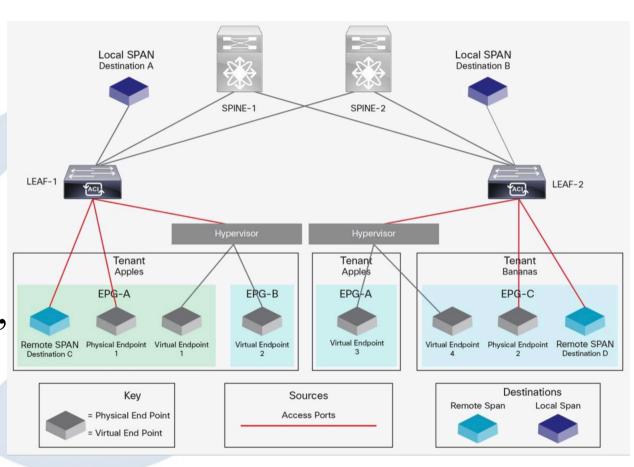
Fabric SPAN - Main Facts

- direction can be:
 - Inbound
 - Outbound
 - Both
- filter options are:
 - Private network
 - Bridge domain
- multiple source paths are supported
- can have multiple switches (leaf or spine) with the same SPAN policy

Fabric SPAN - Use Case

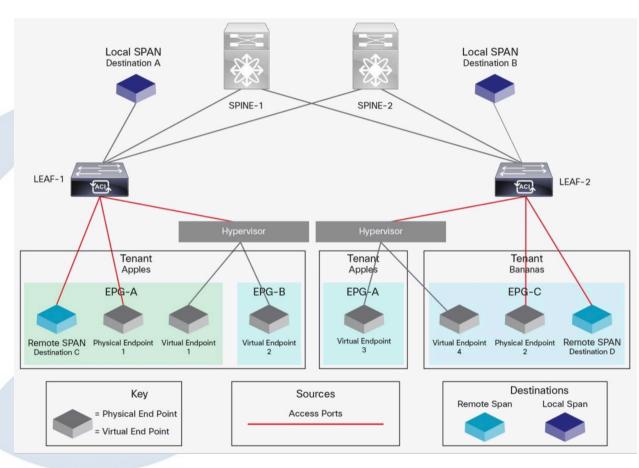
- to mirror traffic that is traversing the spine switches within the fabric
- choose one or more fabric ports (on leaf or spine)
- replicate the traffic to a remote location

Access SPAN - Main Facts


- source port can be any access port
- destination can be another access port (not a port channel or virtual port channel [vPC]) or ERSPAN
- ERSPAN encapsulation is Type I
- direction can be:
 - Inbound
 - Outbound
 - Both

Access SPAN - Main Facts

- filter options are:
 - Tenant
 - Application profile
 - Endpoint group
- multiple source paths are supported


Access SPAN - Use Case

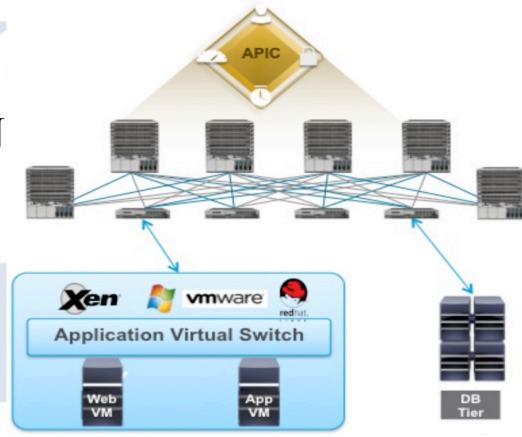
- to mirror traffic that is flowing to and from any host-facing ports on a leaf switch
- locally mirror the traffic to a switch port, or you can send it to a remote destination

Access SPAN - Use Case

- local destination is useful when you want to help ensure that the mirrored traffic does not leave this switch
- important decision to make when planning network capacity

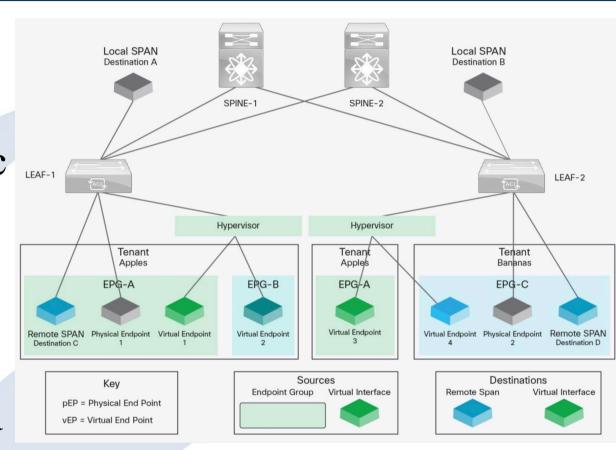
Virtual SPAN - Main Facts

vSPAN requires Cisco Application Virtual Switch


• source can be an EPG or a virtual interface

 destination can be ERSPAN or a virtual interface

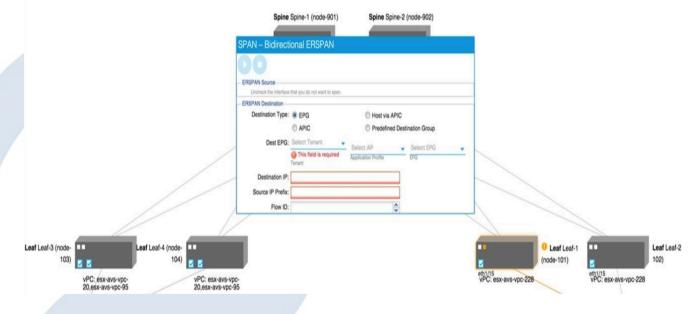
no filtering is possible


• direction can be:

- Inbound
- Outbound
- Both

Virtual SPAN - Use Case

- take advantage of the Application Virtual Switch to mirror traffic from a virtual switch
- useful when traffic is being switched locally within the hypervisor and cannot be captured by the physical leaf switch



• Feature of Cisco ACI Visibility and Troubleshooting

Tool

available from the Operations tab

 using SPAN to troubleshoot two endpoints quickly

• Troubleshooting SPAN Wizard is especially useful for NOC teams

• given two endpoints, the troubleshooting tool will

dynamically build a temporary Access SPAN session

 mirror the necessary traffic to capture the flow

• after the capture is complete, the SPAN session is taken down

• two distinct destinations are introduced:

• APIC

 the APIC acts as a capture device from which the mirrored traffic can be downloaded or inspected

• Host through the APIC

• causes the APIC to act as a proxy, forwarding mirrored traffic to an external analyzer

Scalability

- plan capacity appropriately when you use SPAN with Cisco ACI
- after SPAN traffic has been captured, it will compete with normal traffic on the fabric to be delivered
- be sure to plan for SPAN traffic accordingly to avoid link oversubscription

Scalability

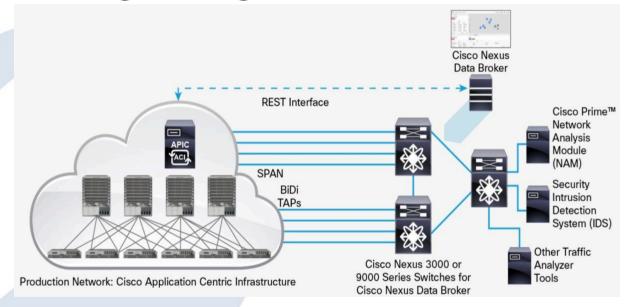
- For each leaf, you can have:
 - Four Tenant or Access SPAN sessions
 - Four Fabric SPAN sessions
- For each SPAN session, you may have:
 - Up to all leaf access ports as the source (Access SPAN)
 - Up to all fabric ports as the source (Fabric SPAN)
 - Up to 280 EPGs or bridge domains as the source (Tenant SPAN)

Cisco Nexus Data Broker

Benefits

Integration with Cisco ACI

highly scalable solution


• options ranging from a small one-switch, embedded deployment to a centralized deployment across

Data Broker **REST Interface** Cisco Prime™ Network Analysis Module SPAN Security Intrusion System (IDS) Other Traffic Cisco Nexus 3000 or Analyzer 9000 Series Switches for Production Network: Cisco Application Centric Infrastructure Cisco Nexus Data Broker

many data centers in different locations

Benefits

- central point for all monitoring configuration
- eliminates the need for users to use multiple systems
- monitor any part of networks in an automated and cost-effective way

