Technical Report

Sex		Case	Processin	ng Summ	ary		
				Cas	ses		
		Va	lid	Miss	sing	To	tal
	Sex	N	Percent	Ν	Percent	Ν	Percent
Explanation_A	F	26	100.0%	0	0.0%	26	100.0%
	M	24	100.0%	0	0.0%	24	100.0%
Explanation_B	F	26	100.0%	0	0.0%	26	100.0%
	M	24	100.0%	0	0.0%	24	100.0%
Evidence_A	F	26	100.0%	0	0.0%	26	100.0%
	M	24	100.0%	0	0.0%	24	100.0%
Evidence_B	F	26	100.0%	0	0.0%	26	100.0%
	M	24	100.0%	0	0.0%	24	100.0%
Context_A	F	26	100.0%	0	0.0%	26	100.0%
	M	24	100.0%	0	0.0%	24	100.0%
Context_B	F	26	100.0%	0	0.0%	26	100.0%
	М	24	100.0%	0	0.0%	24	100.0%
Position_A	F	26	100.0%	0	0.0%	26	100.0%
	М	24	100.0%	0	0.0%	24	100.0%
Position_B	F	26	100.0%	0	0.0%	26	100.0%
	М	24	100.0%	0	0.0%	24	100.0%
Conclusion_A	F	26	100.0%	0	0.0%	26	100.0%
	М	24	100.0%	0	0.0%	24	100.0%
Conclusion_B	F	26	100.0%	0	0.0%	26	100.0%
	M	24	100.0%	0	0.0%	24	100.0%

EXAMINE VARIABLES=Explanation_A Explanation_B
Evidence_A Evidence_B Context_A Context_B
Position_A
 Position_B Conclusion_A Conclusion_B BY
Sex Generation Class
 /PLOT BOXPLOT STEMLEAF
 /COMPARE GROUPS
 /STATISTICS DESCRIPTIVES
 /CINTERVAL 95
 /MISSING LISTWISE
 /NOTOTAL.

Genera	tion	Case Processing Summary Cases							
		Va	lid	Missing		Total			
	Generation	N	Percent	N	Percent	N	Percent		
Explanation_A	0	29	100.0%	0	0.0%	29	100.0%		
	1	21	100.0%	0	0.0%	21	100.0%		
Explanation_B	0	29	100.0%	0	0.0%	29	100.0%		
	1	21	100.0%	0	0.0%	21	100.0%		
Evidence_A	0	29	100.0%	0	0.0%	29	100.0%		
	1	21	100.0%	0	0.0%	21	100.0%		
Evidence_B	0	29	100.0%	0	0.0%	29	100.0%		
	1	21	100.0%	0	0.0%	21	100.0%		
Context_A	0	29	100.0%	0	0.0%	29	100.0%		
	1	21	100.0%	0	0.0%	21	100.0%		
Context_B	0	29	100.0%	0	0.0%	29	100.0%		
	1	21	100.0%	0	0.0%	21	100.0%		
Position_A	0	29	100.0%	0	0.0%	29	100.0%		
	1	21	100.0%	0	0.0%	21	100.0%		
Position_B	0	29	100.0%	0	0.0%	29	100.0%		
	1	21	100.0%	0	0.0%	21	100.0%		
Conclusion_A	0	29	100.0%	0	0.0%	29	100.0%		
	1	21	100.0%	0	0.0%	21	100.0%		
Conclusion_B	0	29	100.0%	0	0.0%	29	100.0%		
	1	21	100.0%	0	0.0%	21	100.0%		

James Madison University Performance Assessment Assignment 3/8/2022 John W. Lee, M. S.

Clas				Cas	es		
		Va	lid	Missing		Total	
	Class	N	Percent	N	Percent	Ν	Per
Explanation_A	Complete	25	100.0%	0	0.0%	25	100
	First	25	100.0%	0	0.0%	25	100
Explanation_B	Complete	25	100.0%	0	0.0%	25	100
	First	25	100.0%	0	0.0%	25	100
Evidence_A	Complete	25	100.0%	0	0.0%	25	100
	First	25	100.0%	0	0.0%	25	100
Evidence_B	Complete	25	100.0%	0	0.0%	25	100
	First	25	100.0%	0	0.0%	25	100
Context_A	Complete	25	100.0%	0	0.0%	25	100
	First	25	100.0%	0	0.0%	25	100
Context_B	Complete	25	100.0%	0	0.0%	25	100
	First	25	100.0%	0	0.0%	25	100
Position_A	Complete	25	100.0%	0	0.0%	25	100
	First	25	100.0%	0	0.0%	25	100
Position_B	Complete	25	100.0%	0	0.0%	25	100
	First	25	100.0%	0	0.0%	25	100
Conclusion_A	Complete	25	100.0%	0	0.0%	25	100
	First	25	100.0%	0	0.0%	25	100
Conclusion_B	Complete	25	100.0%	0	0.0%	25	100
	First	25	100.0%	0	0.0%	25	100

Research Questions

Proposed Research Questions:

- 1. What is the reliability information associated with the value rubrics being utilized?
- 2. What differences exists between first year students and fourth year students?
- 3. Did fourth year students achieve a 3 or higher?
- 4. What are the differences between males and females, and 1st generation vs non-1st gen students on performance?

Are there differences between males and females on performance? Are there differences between 1st generation and non-1st generation student performance in critical thinking?

PAGE 2

Approach

Statistical Software used: SPSS Version: 27 IBM, IBM° SPSS° Statistics Licensed Materials - Property of IBM Corp. © Copyright IBM Corporation and its licensors 1989, 2020. IBM, IBM logo, Ibm.com and SPSS are trademades or registered trademades of International Business Machines Corp., registered in many jurisdictions worldwide. A converted tist of IBM thademades is available on the Web at www.lbm.com/legal/copyridae-Abmil. Other product and service names might be trademades of IBM or other companies. This Program is licensed under the terms of the license agreement accompaning the Program. This Incense agreement may be either located in a Program directory folder or library agreement accompaning the Program. By using the Program you agree to these terms. Release 27.0.0.0 OK The research questions posed above call for a mix of analytic methods in order to determine what models best fit the data. The first question asks simply, what reliability evidence exists for the measure. Here, the Critical Thinking Value Rubric, published by the Association of American Colleges and Universities is utilized. This rubric contains five dimensions or criteria (Explanation of issues, Evidence, Influence of Context and Assumptions, Student's Position, and Conclusions and Related Outcomes. Two faculty raters provided ratings (1 through 4) on each dimension, for each of the 50 students. The second question asks what differences exists between first year students and fourth year students. The third question asks whether or not fourth year students achieved a score of three or above. The fourth questions asks if there are differences on performance in males and females, and 1st generation students and non-1st generation students. The following output and associated syntax follows the approach described above, with key elements identified with an arrow, and annotations included in text boxes.

Descriptive Statistics Of Raw Data SPSS Syntax:

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Explanation_A	50	1.00	4.00	2.2000	1.01015
Explanation_B	50	1.00	4.00	2.2000	1.10657
Evidence_A	50	1.00	4.00	2.3400	1.08063
Evidence_B	50	1.00	4.00	2.4200	1.05153
Context_A	50	1.00	4.00	2.3800	1.04764
Context_B	50	1.00	4.00	2.5600	1.07210
Position_A	50	1.00	4.00	2.1600	.97646
Position_B	50	1.00	4.00	2.0800	.98644
Conclusion_A	50	1.00	4.00	2.2000	.98974
Conclusion_B	50	.00	4.00	2.4000	1.10657
Valid N (listwise)	50				

DESCRIPTIVES
VARIABLES=Explanation_A
Explanation_B Evidence_A
Evidence_B Context_A Context_B
 Position_A Position_B
Conclusion_A Conclusion_B
/STATISTICS=MEAN STDDEV MIN MAX.

Frequencies SPSS Syntax:

Sex

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	F	26	52.0	52.0	52.0
	M	24	48.0	48.0	100.0
	Total	50	100.0	100.0	

FREQUENCIES VARIABLES=Sex Generation Class /ORDER=ANALYSIS.

Generation

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	0	29	58.0	58.0	58.0
	1	21	42.0	42.0	100.0
	Total	50	100.0	100.0	

Class

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Complete	25	50.0	50.0	50.0
	First	25	50.0	50.0	100.0
	Total	50	100.0	100.0	

Transformation SPSS Syntax:

Computing new variables to obtain average score for each student in each one of the five dimensions. Also computing total score for each student based on averaged scores between raters. DATASET ACTIVATE DataSet1.

COMPUTE Exp_avg=(Explanation_A + Explanation_B) / 2.

COMPUTE Evi_avg=(Evidence_A + Evidence_B)/2.

COMPUTE Cont_avg=(Context_A + Context_B)/2.

COMPUTE Pos_avg=(Position_A + Position_B)/2.

COMPUTE Conc_avg=(Conclusion_A + Conclusion_B)/2.

COMPUTE Totscore_avg = (Exp_avg + Evi_avg + Cont_avg +

Pos_avg + Conc_avg)/5.

EXECUTE.

Descriptive statistics of Transformed Data.

DESCRIPTIVES VARIABLES=Exp_avg Evi_avg Cont_avg Pos_avg Conc_avg Totscore_avg /STATISTICS=MEAN STDDEV MIN MAX KURTOSIS SKEWNESS.

Descriptive Statistics

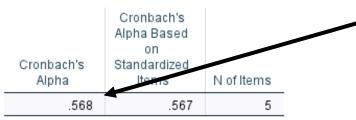
	N	Minimum	Maximum	Mean	Std. Deviation	Skewness		Kurt	tosis
	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Std. Error
Exp_avg	50	1.00	4.00	2.2000	.96890	.316	.337	-1.175	.662
Evi_avg	50	1.00	4.00	2.3800	.97185	.179	.337	957	.662
Cont_avg	50	1.00	4.00	2.4700	.99699	.070	.337	-1.102	.662
Pos_avg	50	1.00	4.00	2.1200	.93438	.613	.337	458	.662
Conc_avg	50	.50	4.00	2.3000	.94221	.019	.337	-1.021	.662
Totscore_avg	50	1.30	3.40	2.2940	.58324	.082	.337	-1.141	.662
Valid N (listwise)	50								

CORRELATIONS
/VARIABLES=Exp_avg Evi_avg
Cont_avg Pos_avg Conc_avg
/PRINT=TWOTAIL NOSIG LOWER
/MISSING=PAIRWISE.

Correlations

		Exp_avg	Evi_avg	Cont_avg	Pos_avg	Conc_avg
Exp_avg	Pearson Correlation					
	N	50				
Evi_avg	Pearson Correlation	.362**				
	Sig. (2-tailed)	.010				
	N	50	50			
Cont_avg	Pearson Correlation	.329	.065			
	Sig. (2-tailed)	.020	.655			
	N	50	50	50	1	
Pos_avg	Pearson Correlation	.187	.112	.070		
	Sig. (2-tailed)	.193	.440	.631		
	N	50	50	50	50	
Conc_avg	Pearson Correlation	.296*	.308*	.298*	.051	
	Sig. (2-tailed)	.037	.030	.036	.725	
	N	50	50	50	50	50

Here we can see that a number of the computed criterion variables have a weak correlation with each other. This could foreshadow a reduction in the internal consistency of the measure.


^{**.} Correlation is significant at the 0.01 level (2-tailed).

^{*.} Correlation is significant at the 0.05 level (2-tailed).

Lee, J., M. S.

Question #1: Reliability SPSS Syntax: Internal Consistency

Reliability Statistics

Inter-Item Correlation Matrix

	Exp_avg	Evi_avg	Cont_avg	Pos_avg	Conc_avg
Exp_avg	1.000	.362	.329	.187	.296
Evi_avg	.362	1.000	.065	.112	.308
Cont_avg	.329	.065	1.000	.070	.298
Pos_avg	.187	.112	.070	1.000	.051
Conc_avg	.296	.308	.298	.051	1.000

Inter-Item Covariance Matrix

	Exp_avg	Evi_avg	Cont_avg	Pos_avg	Conc_avg
Exp_avg	.939	.341	.317	.169	.270
Evi_avg	.341	.944	.063	.101	.282
Cont_avg	.317	.063	.994	.065	.280
Pos_avg	.169	.101	.065	.873	.045
Conc_avg	.270	.282	.280	.045	.888

Summary Item Statistics

	Mean	Minimum	Maximum	Range	Maximum / Minimum	Variance	N of Items
Item Means	2.294	2.120	2.470	.350	1.165	.019	5
Item Variances	.928	.873	.994	.121	1.138	.002	5
Inter-Item Covariances	.193	.645	.341	.296	7.591	.013	5
Inter-Item Correlations	.208 🔻	.051	362	.311	7.097	.015	5

Item variances are high, which contributes to an increase in coefficient alpha. Inter-item correlations are low, which can reduce to strength of coefficient alpha. This could indicate that the different criterion being summed into the total score (Explanation, Evidence, Context, Position, Conclusion) are not strongly related to the construct being measured. This was foreshadowed in our correlation analysis on page 5.

RELIABILITY

/VARIABLES=Exp_avg Evi_avg Cont_avg

Pos_avg Conc_avg

/SCALE('ALL VARIABLES') ALL

/MODEL=ALPHA

/STATISTICS=DESCRIPTIVE SCALE CORR COV

ANOVA

/SUMMARY=MEANS VARIANCE COV CORR.

Internal Consistency is reflected by a coefficient alpha of .568. This is in line with the correlations alluded to above, and also indicates a moderately low level of internal consistency among the items on the measure of Critical Thinking.

Question #1: Reliability SPSS Syntax: Interrater Reliability

Rater A and B on Explanation

Reliability Statistics

Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items
.804	.806	2

Rater A and B on Evidence

Reliability Statistics

Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items
.796	.797	2

Rater A and B on Context

Reliability Statistics

Rater A and B on Position

Reliability Statistics

Cronbach's	Cronbach's Alpha Based on Standardized	
Alpha	Items	N of Items
.897	.897	2

Rater A and B on Conclusion

Reliability Statistics

Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items
.759	.762	2

```
RELIABILITY

/VARIABLES=Explanation_A Explanation_B

/SCALE('ALL VARIABLES') ALL

/MODEL=ALPHA

/STATISTICS=DESCRIPTIVE SCALE CORR COV

/SUMMARY=MEANS VARIANCE COV CORR

/ICC=MODEL(MIXED) TYPE(CONSISTENCY) CIN=95

TESTVAL=0.
```

```
RELIABILITY

/VARIABLES=Evidence_A Evidence_B

/SCALE('ALL VARIABLES') ALL

/MODEL=ALPHA

/STATISTICS=DESCRIPTIVE SCALE CORR COV

/SUMMARY=MEANS VARIANCE COV CORR

/ICC=MODEL(MIXED) TYPE(CONSISTENCY) CIN=95

TESTVAL=0.
```

```
RELIABILITY

/VARIABLES=Context_A Context_B

/SCALE('ALL VARIABLES') ALL

/MODEL=ALPHA

/STATISTICS=DESCRIPTIVE SCALE CORR COV

/SUMMARY=MEANS VARIANCE COV CORR

/ICC=MODEL(MIXED) TYPE(CONSISTENCY) CIN=95

TESTVAL=0.
```

```
RELIABILITY

/VARIABLES=Position_A Position_B

/SCALE('ALL VARIABLES') ALL

/MODEL=ALPHA

/STATISTICS=DESCRIPTIVE SCALE CORR COV

/SUMMARY=MEANS VARIANCE COV CORR

/ICC=MODEL(MIXED) TYPE(CONSISTENCY) CIN=95

TESTVAL=0.
```

```
RELIABILITY

/VARIABLES=Conclusion_A Conclusion_B

/SCALE('ALL VARIABLES') ALL

/MODEL=ALPHA

/STATISTICS=DESCRIPTIVE SCALE CORR COV

/SUMMARY=MEANS VARIANCE COV CORR

/ICC=MODEL(MIXED) TYPE(CONSISTENCY) CIN=95

TESTVAL=0.
```

Interrater agreement as calculated above is satisfactory for each one of the criteria. This indicates that the low reliability reported on page 6 is not likely due to interrater agreement.

Question #2: Analysis of Covariance Part 1: Descriptive Statistics SPSS Syntax:

MEANS TABLES=dv cov BY Group /CELLS=MEAN COUNT STDDEV.

Report									
Group	•	Achievement	meta cognitive						
non traditional females	Mean	50.9600	100.9200						
	N	25	25						
	Std. Deviation	3.69098	6.24446						
traditional male	Mean	48.8800	101.7200						
	N	25	25						
	Std. Deviation	3.34564	6.38697						
traditional female	Mean	49.6000	102.8000						
	N	25	25						
	Std. Deviation	3.67423	6.39010						
Total	Mean	49.8133	101.8133						
	N	75	75						
	Std. Deviation	3.63055	6.30249						

These descriptive stats provide the means for each one of the levels of the categorical variable on achievement and meta cognitive ability.

Notice, these values

differ.

Non traditional females have the highest mean on achievement, and the lowest mean on meta cog. Traditional females have a mean between the other two on achievement, and the highest meta cog mean. Also notice here, the differences between the meta cognitive means.

Of note regarding these descriptive is the relationship between the categorical IV (student type) and the continuous IV (meta cognitive). We can see that a change in student type, does not appear to have a very large impact on the level of meta cognitive ability. This indicates that the correlation between student type and meta cognitive ability is low. This is a good property of this model

Question #2: Differences between first year and fourth year students

Part 2: Independent samples T-test

Assumptions

SPSS Syntax:

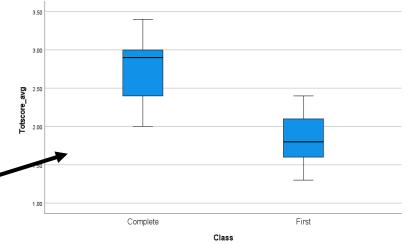
Descriptives

	Class			Statistic	Std. Error
Totscore_avg	Complete	Mean		2.7640	.07208
		95% Confidence Interval	Lower Bound	2.6152	
		for Mean	Upper Bound	2.9128	
		5% Trimmed Mean		2.7689	
		Median	2.9000		
		Variance	.130		
		Std. Deviation	.36042		
		Minimum	2.00		
		Maximum	3.40		
		Range	1.40		
		Interquartile Range	.60		
		Skewness	285	.464	
		Kurtosis	710	.902	
	First	Mean		1.8240	.06462
		95% Confidence Interval	Lower Bound	1.6906	
		for Mean	Upper Bound	1.9574	
		5% Trimmed Mean	1.8211		
		Median	1.8000		
		Variance		.104	
		Std. Deviation		.32311	
		Minimum	1.30		
		Maximum	2.40		
		Range	1.10		
		Interquartile Range		.50	
		Skewness		.265	.464
		Kurtosis		-1.093	.902

There are no outliers in the data set, and the means appear to be different based on visual inspection of box plot.

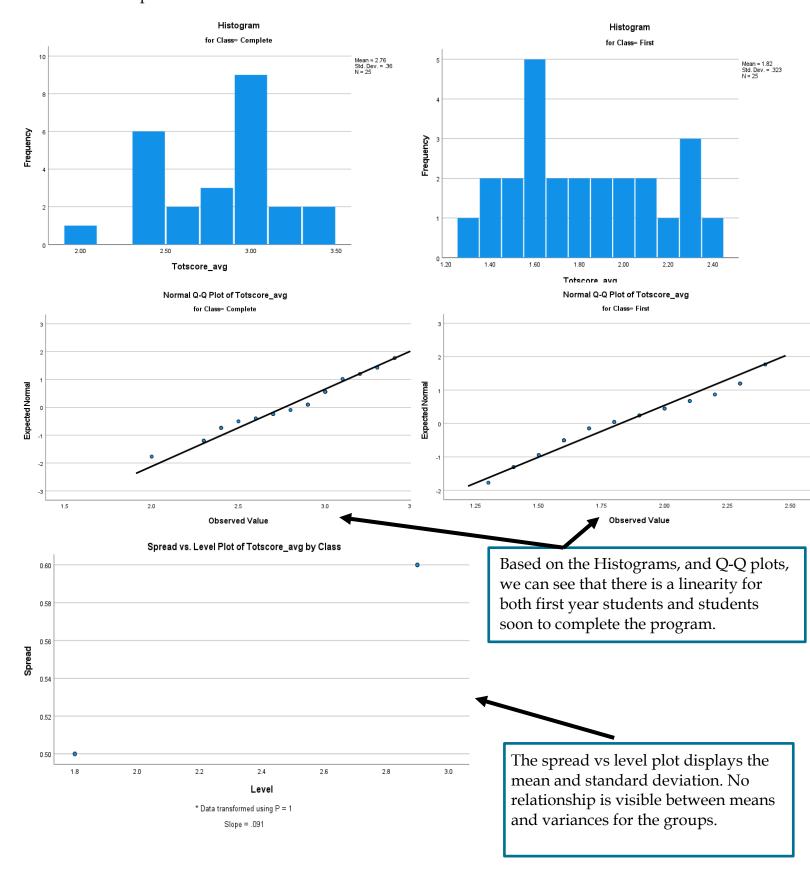
Test of Homogeneity of Variance

		Levene Statistic	df1	df2	Sig.
Totscore_avg	Based on Mean	.366	1	48	.548
	Based on Median	.168	1	48	.684
	Based on Median and with adjusted df	.168	1	42.785	.684
	Based on trimmed mean	.357	1	48	.553


EXAMINE VARIABLES=Totscore_avg
BY Class
 /PLOT BOXPLOT HISTOGRAM

NPPLOT SPREADLEVEL(1)
 /COMPARE GROUPS
 /STATISTICS DESCRIPTIVES
 /CINTERVAL 95
 /MISSING LISTWISE
 /NOTOTAL.

Tests of Normality


		Kolmo	ogorov-Smir	nov ^a	Shapiro-Wilk			
	Class	Statistic	df	Sig.	Statistic	df	Sig.	
Totscore_avg	Complete	.167	25	.070	.953	25	.288	
	First	.156	25	.119	.946	25	.200	
a. Lilliefors S	11							

Here we can see that the test of normality for both the first year students, and the students soon to be complete, are normally distributed. Meeting our assumption of normality to an independent samples t-test.

Test of homogeneity of variance is not significant, indicating the assumption is satisfied.

3/10/2022

Part 2: Independent samples T-test SPSS Syntax:

Group Statistics

	Class	N	Mean	Std. Deviation	Std. Error Mean
Totscore_avg	First	25	1.8240	.32311	.06462
	Complete	25	2.7640	.36042	.07208

T-TEST
GROUPS=Class('First'
'Complete')
/MISSING=ANALYSIS
/VARIABLES=Totscore_avg
/ES DISPLAY(TRUE)
/CRITERIA=CI(.95).

Independent Samples Test

	Levene's Test for Equality of Variances						t-test for Equality	of Means		
F Sig.			t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidenc Differ Lower		
Totscore_avg	Equal variances assumed	.366	.548	-9.710	48	.000	94000	.09681	-1.13465	74535
	Equal variances not assumed			-9.710	47.438	.000	94000	.09681	-1.13471	74529

Because our assumptions for Independent Samples T test are met (above analysis), we see that the test is significant at p<.001.

Independent Samples Effect Sizes

			Point	95% Confidence Interval		
		Standardizer ^a	Estimate	Lower	Upper	
Totscore_avg	Cohen's d	.34227	-2.746	-3.518	-1.959	
	Hedges' correction	.34774	-2.703	-3.463	-1.929	
	Glass's delta	.36042	2 608	-3.517	-1.679	

The denominator used in estimating the effect sizes.

Cohen's d uses the pooled standard deviation.

Hedges' correction uses the pooled standard deviation, plus a correction sector.

Glass's delta uses the sample standard deviation of the control group.

Based on the above analysis we can conclude that there is a statistically significant difference between first year students and students who are soon to complete the program in their performance on the critical thinking measure. Although the t-test is significant, Cohen's D effect size is moderately small. This means that even though the difference between the two means is statistically significant, it is a relatively small effect.

Question #3: Did fourth year students achieve a 3 or better.

SPSS Syntax:

Descriptive Statisticsa

	N	Minimum	Maximum	Mean	Std. Deviation
Totscore_avg	25	2.00	3.40	2.7640	.36042
Valid N. (lietwice)	25			4	

a. Class = Complete

We see here that overall, Fourth year students did not achieve a 3 or better. Their mean total score was 2.76.

Additional analysis:

DATASET ACTIVATE DataSet1.
SORT CASES BY Class.
SPLIT FILE SEPARATE BY Class.

DATASET ACTIVATE DataSet1.

SORT CASES BY Class.

SPLIT FILE SEPARATE BY Class.

DESCRIPTIVES

VARIABLES=Totscore_avg
 /STATISTICS=MEAN STDDEV MIN
MAX.

DESCRIPTIVES VARIABLES=Exp_avg
Evi_avg Cont_avg Pos_avg Conc_avg
/STATISTICS=MEAN STDDEV MIN MAX.

Descriptive Statistics^a

	Ν	Minimum	Maximum	Mean	Std. Deviation
Exp_avg	25	1.00	4.00	2.7400	.87939
Evi_avg	25	1.00	4.00	2.8600	90502
Cont_avg	25	1.00	4.00	2.9600	.50046
Pos_avg	25	1.00	4.00	2.5000	1.02062
Conc_avg	25	1.50	4.00	2.7600	.70887
Valid N (listwise)	25				

We see that Context had the highest mean score (M=2.96), and Position had the lowest mean score (M=2.50) for seniors.

a. Class = Complete

Group Statistics

	Class	N	Mean	Std. Deviation	Std. Error Mean
Exp_avg	First	25	1.6600	.73201	.14640
	Complete	25	2.7400	.87939	.17588
Evi_avg	First	25	1.9000	.80364	.16073
	Complete	25	2.8600	.89582	.17916
Cont_avg	First	25	1.9800	.84755	.16951
	Complete	25	2.9600	.90046	.18009
Pos_avg	First	25	1.7400	.66332	.13266
	Complete	25	2.5000	1.02062	.20412
Conc_avg	First	25	1.8400	.93229	.18646
	Complete	25	2.7600	.70887	.14177

An interesting analysis here is the difference between the means for first year and fourth year students on their average scores for each criterion. An independent samples t-test was conducted to determine if the difference between the first year and fourth year students was significant.

SPLIT FILE OFF.
T-TEST GROUPS=Class('First'
'Complete')
 /MISSING=ANALYSIS
 /VARIABLES=Exp_avg Evi_avg
Cont_avg Pos_avg Conc_avg
 /ES DISPLAY(TRUE)
 /CRITERIA=CI(.95).

Lee, J., M. S. Additional Analysis continued:

Independent Samples Test

		Levene's Test fo Varian		t-test for Equality of Means						
		F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Differe Lower	
Exp_avg	Equal variances assumed	1.690	.200	-4.720	48	.000	-1.08000	.22884	-1.54011	61989
	Equal variances not assumed			-4.720	46.471	.000	-1.08000	.22884	-1.54050	61950
Evi_avg	Equal variances assumed	.471	.496	-3.988	48	.000	96000	.24069	-1.44395	47605
	Equal variances not assumed			-3.988	47.445	.000	96000	.24069	-1.44409	47591
Cont_avg	Equal variances assumed	.220	.641	-3.962	48	.000	98000	.24732	-1.47727	48273
	Equal variances not assumed			-3.962	47.825	.000	98000	.24732	-1.47732	48268
Pos_avg	Equal variances assumed	7.521	.009	-3.122	48	.003	76000	.24345	-1.24948	27052
	Equal variances not assumed			-3.122	41.205	.003	76000	.24345	-1.25158	26842
Conc_avg	Equal variances assumed	1.621	.209	-3.928	48	.000	92000	.23424	-1.39096	44904
	Equal variances not assumed			-3.928	44.799	.000	92000	.23424	-1.39183	44817

Independent Samples Effect Sizes

			Point	95% Confide	nce Interval
		Standardizer ^a	Estimate	Lower	Upper
Exp_avg	Cohen's d	.80906	-1.335	-1.944	714
	Hedges' correction	.82199	-1.314	-1.914	703
	Glass's delta	.87939	-1.228	-1.872	566
Evi_avg	Cohen's d	.85098	-1.128	-1.721	525
	Hedges' correction	.86457	-1.110	-1.694	516
	Glass's delta	.89582	-1.072	-1.694	432
Cont_avg	Cohen's d	.87440	-1.121	-1.713	518
	Hedges' correction	.88837	-1.103	-1.687	510
	Glass's delta	.90046	-1.088	-1.713	446
Pos_avg	Cohen's d	.86072	883	-1.460	297
	Hedges' correction	.87446	869	-1.438	292
	Glass's delta	1.02062	745	-1.331	145
Conc_avg	Cohen's d	.82815	-1.111	-1.703	509
	Hedges' correction	.84138	-1.093	-1.676	501
	Glass's delta	.70887	-1.298	-1.952	625

a. The denominator used in estimating the effect sizes.
 Cohen's d uses the pooled standard deviation.
 Hedges' correction uses the pooled standard deviation, plus a correction factor.
 Glass's delta uses the sample standard deviation of the control group.

From both of the independent samples t-test of the mean scores for each criteria between the first year and fourth year students, we can see that although the fourth year students did not meet the target score of 3 or higher, there scores were significantly higher than the first year students. This is evident in viewing the changes in the overall score, as well as each criterion score. The effect size for each of these criteria was significant. This could indicate that that the weak correlations between separate items on this measure contribute to the low effect size obtained in the overall score.

Part 4: Differences between males and females, and 1st generation vs non-1st gen students on performance.

Statistic Std. Error

Analysis: Two way between subjects ANOVA.

Descriptive statistics and Assumptions.

Descriptives

Sex

Generation

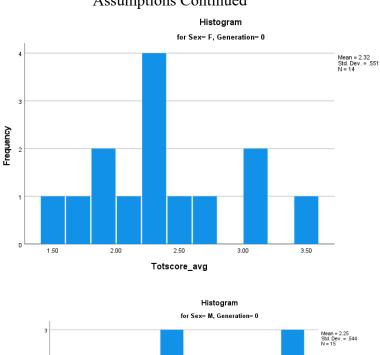
	Sex	Gener	ation		Statistic	Sta. Error
Totscore_avg	F	0	Mean		2.3214	.14720
			95% Confidence Interval	Lower Bound	2.0034	
			for Mean	Upper Bound	2.6394	
			5% Trimmed Mean		2.3071	
			Median		2.3000	
			Variance		.303	
			Std. Deviation		.55077	
			Minimum		1.50	
			Maximum		3.40	
			Range		1.90	
			Interquartile Range		.90	
			Skewness		.416	.597
			Kurtosis		340	1.154
		1	Mean		2.2917	.18359
			95% Confidence Interval	Lower Bound	1.8876	
			for Mean	Upper Bound	2.6957	
			5% Trimmed Mean		2.2796	
			Median		2.3500	
			Variance		.404	
			Std. Deviation	.63598		
			Minimum	1.50		
			Maximum	3.30		
			Range	1.80		
			Interquartile Range	1.20		
			Skewness	Skewness		
			Kurtosis	.260 -1.279	1.232	
	M	0	Mean	2.2533	.14036	
			95% Confidence Interval	Lower Bound	1.9523	
			for Mean	Upper Bound	2.5544	
			5% Trimmed Mean		2.2648	
			Median		2.3000	
			Variance	.296		
			Std. Deviation	.54362		
			Minimum	1.30		
			Maximum	3.00		
			Range	1.70		
			Interquartile Range		1.10	
			Skewness		.042	.580
			Kurtosis		924	1.121
		1	Mean		2.3222	.23850
		•	95% Confidence Interval	Lower Bound	1.7722	.20000
			for Mean	Upper Bound	2.8722	
			5% Trimmed Mean	oppor Boarra	2.3302	
			Median	2.7000		
			Variance	.512		
			Std. Deviation	.71550		
					1.40	
			Minimum Maximum			
					3.10 1.70	
			Range Interguartile Range			
			Interquartile Range		1.45	74.7
			Skewness		369	.717
			Kurtosis		-2.026	1.400

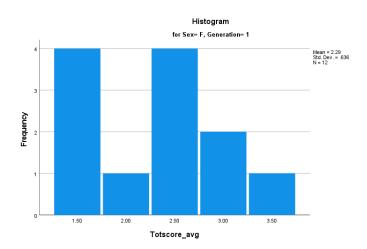
EXAMINE VARIABLES=Totscore_avg BY Sex by
Generation
/PLOT BOXPLOT HISTOGRAM NPPLOT
SPREADLEVEL(1)
/COMPARE GROUPS
/STATISTICS DESCRIPTIVES
/CINTERVAL 95
/MISSING LISTWISE
/NOTOTAL.

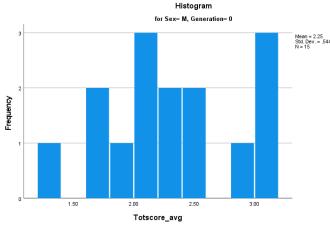
Case Processing Summary

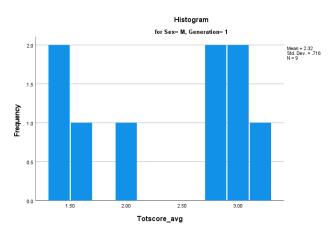
					Cas	ses			
			Valid		Missing		Total		
	Sex	Generation	N	Percent	N	Percent	N	Percent	
Totscore_avg	F	0	14	100.0%	0	0.0%	14	100.0%	
		1	12	100.0%	0	0.0%	12	100.0%	
	М	0	15	100.0%	0	0.0%	15	100.0%	
		1	q	100.0%	0	0.0%	q	100.0%	

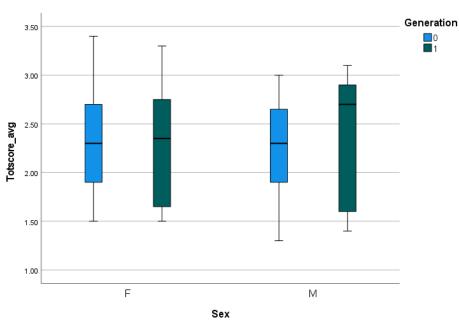
Assumption of Normality Is met




- *. This is a lower bound of the true significance.
- a. Lilliefors Significance Correction


Assumption of Homogeneity of Variance Is met


Test of Homogeneity of Variance Levene Totscore_avg Based on Mean 46 .309 Based on Median .634 3 46 .597 Based on Median and .634 3 38.425 .598 Based on trimmed mean 1.252 .302


Lee, J., M. S. Assumptions Continued

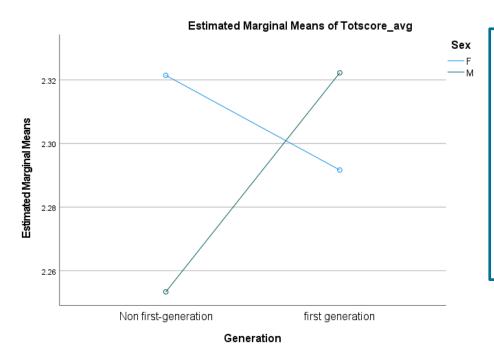
Part 4: Differences between males and females, and 1st generation vs non-1st gen students on performance.

Analysis: Two way between subjects ANOVA.

Descriptive Statistics

Dependent variable: Totscore_avg								
Sex	Generation	Mean	Std. Deviation	Ν				
F	Non first-generation	2.3214	.55077	14				
	first generation	2.2917	.63598	12				
	Total	2.3077	.57960	26				
M	Non first-generation	2.2533	.54362	15				
	first generation	2.3222	.71550	9				
	Total	2.2792	.59926	24				
Total	Non first-generation	2.2862	.53833	29				
	first generation	2.3048	.65382	21				
	Total	2.2940	.58324	50				

UNIANOVA Totscore_avg BY Sex Generation
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/PLOT=PROFILE(Sex*Generation
Generation*Sex) TYPE=LINE ERRORBAR=NO
MEANREFERENCE=NO YAXIS=AUTO
/EMMEANS=TABLES(Sex)
/EMMEANS=TABLES(Generation)
/EMMEANS=TABLES(Sex*Generation)
/PRINT ETASQ DESCRIPTIVE
/CRITERIA=ALPHA(.05)
/DESIGN=Sex Generation Sex*Generation.


Tests of Between-Subjects Effects

Dependent Variabl	e: Totscore_avg					
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	.043ª	3	.014	.039	.989	.003
Intercept	253.898	1	253.898	702.489	.000	.939
Sex	.004	1	.004	.012	.914	.000
Generation	.005	1	.005	.013	.911	.500
Sex * Generation	.029	1	.029	.081	.777	.002
Error	16.626	46	.361			
Total	279.790	50				
Corrected Total	16.668	49				

a. R Squared = .003 (Adjusted R Squared = -.062)

The interaction between Sex and Generation is not significant.

The main effect of sex, and the main effect of generation are both non-significant on performance.

The intercept is displayed visually. However, we have unequal samples sizes and know from above that our interaction and main affects were non-significant. Future analysis may be needed with larger samples sizes in order to examine the relationship between Sex and Gender on performance on the critical thinking measure.

Summary

In summary, the above output indicates that the internal consistency of the critical thinking VALUE rubric is moderate to low (page 6). The inter rater agreement for scoring of the 50 students included in the study was high (page 7). First year students score significantly lower on the critical thinking VALUE rubric than do fourth year students (page 11, 13). Additionally, fourth year students are not currently meeting a score of three or above on the Critical Thinking VALUE Rubric (page 12). There are no differences between sex and generation on performance (page 16).

The critical thinking VALUE rubric contains 5 criteria. Many of these criteria have a weak correlation with each other, which could contribute to low internal consistency in reliability analysis. Further investigation into the reliability and validity of the critical thinking VALUE rubric is warranted. The established desired score of three should be evaluated for relevancy based on these analyses.

This study did not achieve balanced samples sizes for males and females, or generation. Future iterations may benefit from increased samples sizes.

Fourth year students are performing significantly better than first year students on the critical thinking VALUE Rubric.