Annotated Output

EXAMINE VARIABLES=Group cov dv /PLOT BOXPLOT STEMLEAF /COMPARE GROUPS /STATISTICS DESCRIPTIVES /CINTERVAL 95 /MISSING LISTWISE /NOTOTAL.

Case Processing Summary											
			Cas	ses							
	Va	lid	Miss	sing	Total						
	N Percent		N	Percent	Ν	Percent					
Group	75	100.0%	0	0.0%	75	100.0%					
meta cognitive	75	100.0%	0	0.0%	75	100.0%					
Achievement	75	100.0%	0	0.0%	75	100.0%					

James Madison University PSYCH-608 Course Work 2/20/2022 John W. Lee, M. S.

Research Questions

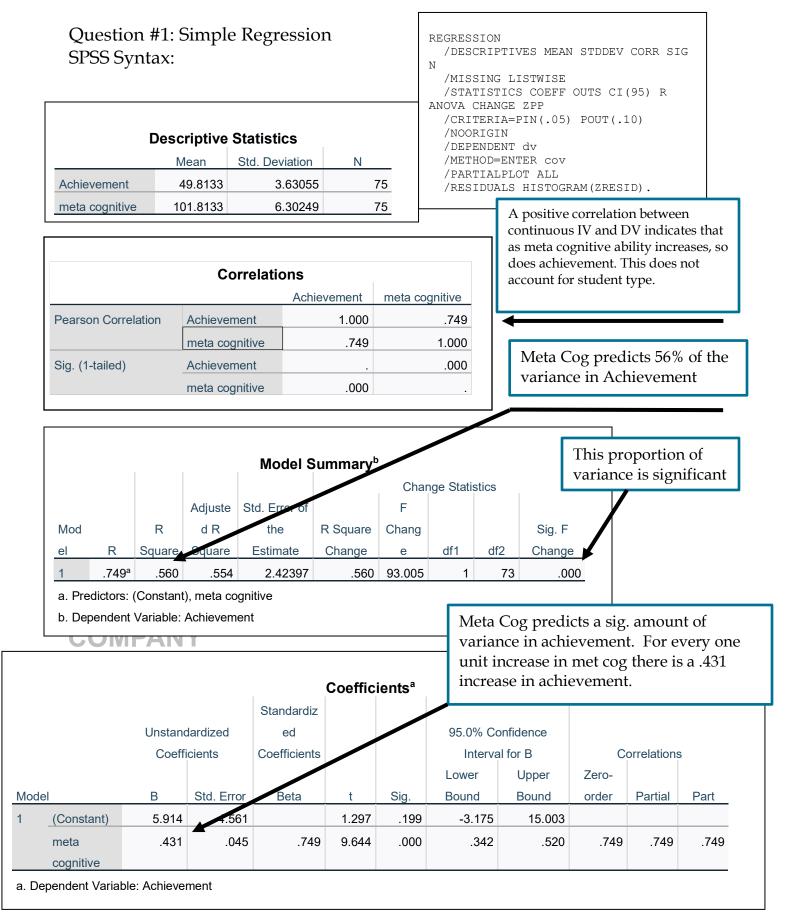
Proposed Research Questions:

- Is there a relationship between meta-cognition skills and achievement? Can metacognition predict achievement? Meta-cognition skills involve being able to accurately assess what you know and what you don't know.
- 2. Do the 3 types of students differ in terms of achievement from the average achievement for the whole sample when controlling for meta-cognition skills? For example, is one group performing significantly worse than average while the other two are performing better than average, after controlling for differences on meta-cognition skills. The three types of students are nontraditional female students, traditional male students, and traditional female students.
- 3. Does the prediction of achievement from metacognition change depending on what type of student you are? If so, how?

Are there differences between non-traditional female students, traditional female students and traditional male students in achievement when controlling for meta cognition?

Approach

bersion: 2? Substraining and the provide of th


The research questions posed above call for a mix of analytic methods in order to determine what models best fit the data.

The first question asks simply, is there a correlation between two continuous variables. The independent variable is described as Meta-cognition, and the dependent variable is described as achievement. In order to conduct this analysis a simple correlation and simple regression is performed.

The second questions requires the use of multiple regression, although the techniques applied resemble traditional ANOVA and ANCOVA designs. For the second questions we have one categorical predictor (type of student), one continuous predictor (metacognitive ability), and one continuous criterion or dependent variable (achievement). The strength of utilizing a model based approach with a multiple regression framework is the ability to identify specific sources of variance with our model, compare different models, and explore interactions at once. This is particularly useful as this question specifically asks how each one of our levels of the categorical variable (student type) performs relative to achievement, while controlling for our continuous variable (meta cognitive ability). To answer the second question, we will need to first obtain descriptive to foreshadow relationships, then check for an interaction, followed by our follow up analysis consider the main effects while controlling for our continuous IV.

The third question is addressed in the process of answering number two, using a model based multiple regression framework. Here, the test of the interaction indicates whether or not the prediction of achievement from metacognitive ability depends on the type of student.

The following output and associated syntax follows the approach described above, with key elements identified with \longrightarrow an arrow, and annotations included in text boxes.

Question #2: Analysis of Covariance Part 1: Descriptive Statistics SPSS Syntax:

MEANS TABLES=dv cov BY Group /CELLS=MEAN COUNT STDDEV.

Group	Report	Achievement	meta cognitive
non traditional females	Mean	50.9600	100.9200
	Ν	25	25
	Std. Deviation	3.69098	6.24446
traditional male	Mean	48.8800	101.7200
	N	25	25
	Std. Deviation	3.34564	6.38697
traditional female	Mean	49.6000	102.8000
	N	25	25
	Std. Deviation	3.67423	6.39010
Total	Mean	49.8133	101.8133
	N	75	75
	Std. Deviation	3.63055	6.30249

These descriptive stats provide the means for each one of the levels of the categorical variable on achievement and meta cognitive ability. Notice, these values differ.

Non traditional females have the highest mean on achievement, and the lowest mean on meta cog. Traditional females have a mean between the other two on achievement, and the highest meta cog mean. Also notice here, the differences between the meta cognitive means.

Of note regarding these descriptive is the relationship between the categorical IV (student type) and the continuous IV (meta cognitive). We can see that a change in student type, does not appear to have a very large impact on the level of meta cognitive ability. This indicates that the correlation between student type and meta cognitive ability is low. This is a good property of this model

Lee, J., M. S. 2/22/2022 Question #2: Analysis of Covariance Part 2: Simple regression between achievment (DV) and meta Metacognitive ability (continuous IV) for each student type (catagorical IV). SPSS Syntax: SORT CASES BY group . Temporary. SPLIT FILE Non Traditional Females SEPARATE BY group . Coefficients^{a,b} REGRESSION /DEPENDENT dv Standardized /METHOD=ENTER cov. Unstandardized Coefficients Coefficients Model В Std. Error Beta Sig 1 3.519 7.554 (Constant) .466 .646 .470 .075 .795 6.291 .000 meta cognitive a. Group = non traditional females Here we see that the b. Dependent Variable: Achievement assumption of homogeneity of **Traditional Males** Coefficients^{a,b} regression is met, with each of the Standardize levels of student **Unstandardized Coefficients** Coefficients type (Cat IV), Model В Std. Error Beta t displaying very 1 (Constant) 5.850 6.565 .891 similar slopes. .423 .064 .808 6.567 .000 meta cognitive a. Group = traditional male b. Dependent Variable: Achievement This foreshadows that there is not an **Traditional Females** interaction between Coefficients^{a,b} the two IV's on the Standardi DV. Unstandardized Coefficients ficients Model B Std. Erro Beta Sig. 1 (Constant) 3.235 7.659 .422 .677 meta cognitive .451 .074 .784 6.065 .000 a. Group = traditional female b. Dependent Variable: Achievement

Here we can see that there was a slight difference between the prediction of achievement in males, when compared to females, while controlling for meta cognition. There was not a noticeable difference between non-traditional and traditional females in predicting achievement while controlling for meta cognition. Multiple regression analysis will be performed to formally test the significance of the interaction between males and females.

2

3

.808^b

.808^c

a. Predictors: (Constant), meta cognitive

b. Predictors: (Constant), meta cognitive, e1, e2

.652

.653

c. Predictors: (Constant), meta cognitive, e1, e2, int1, int2

.637

.628

Question #2: Analysis of Covariance	if (group=1) e1 =-1.
Part 3: Coding of Categorical Variable &	if (group=2) e1=1. If (group=3) e1=0.
And creation of interaction variables.	II (group 3) er 0.
SPSS Syntax:	if (group=1) e2=-1. if (group=2) e2=0.
Code Key: Effect Coding	if (group=3) e2=1. execute.
Non-traditional Females = Group 1, coded -1 in e1	
Traditional Males = Group 2, coded 1 in e1	<pre>compute int1=e1*cov. compute int2=e2*cov.</pre>
Traditional Females = Group 3, coded 1 in e2	execute.
_	

Part 4: Multiple regression analysis of three nested models. Test of

	nteracti PSS Synt				/DEPEN	ON STICS COE DENT dv D=ENTER co	-	-	-
		Variables Variables	Entered/Rer			D=ENTER i			eı
	Model	Entered	Remov						
	1	meta cognitiv		. Enter		The first th	0		
		e1, e2 ^b		. Enter		nteraction		-	1 I
	3	int1, int2 ^b		. Enter		he R²Char Adding the	0		not
	-	lent Variable: lested variabl	Achievement es entered.		e	explain a stremaining	ignificant	t amoun	
				Model S	Summary				
						Cha	ange Statisti	cs	
			Adjusted R	Std. Error of	R Square				
lel	R	R Square	Square	the Formate	Change	F Change	df1	df2	Sig. F Chang
	.749 ^a	.560	.554	2.42397	.560	93.005	1	73	.00

PAGE 7

71

69

.000

.896

2

2

Because the interaction is not significant, model 2 is examined to determine whether the intercepts (main effects) are different for each of the three student types.

.092

.001

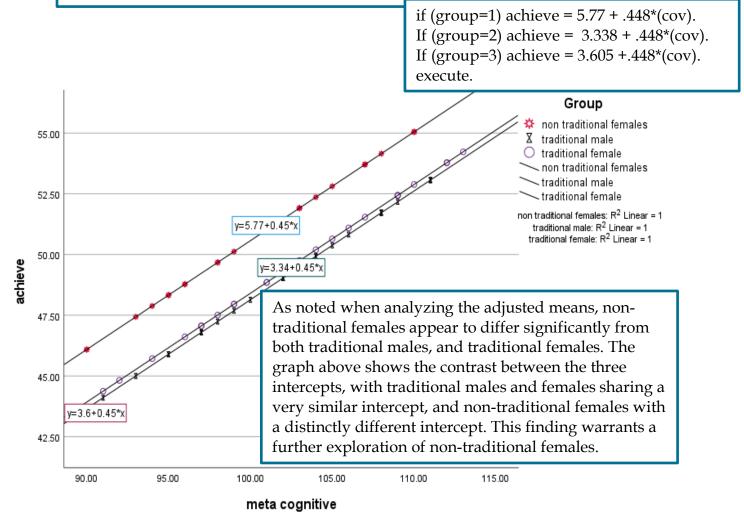
9.374

.110

2.18615

2.21409

		(Unstandardize	Coefficients ^a	Standardized Coefficients			the interactions in model three. There is no significant interaction.
Model		В	Std. Error	Beta	t	Sig.	
1	(Constant)	5.914	4.561		1.297	.199	
	meta cognitive	.431	.045	.749	9.644	.000	
2	(Constant)	4.230	4.145		1.021	.311	Because the
	meta cognitive	.448	.041	.777	11.019	.000	interaction is not
	e1	892	.357	202	-2.497	.015	significant, we
	e2	655	.359	148	-1.824	.072	examine the data in model 2.
3	(Constant)	4.201	4.198		1.001	.320	model 2.
	meta cognitire	.448	.041	.778	10.885	.000	
	e1	1.648	5.913	.373	.279	.781	
	e2	966	5.942	219	163	.87	Ν
	int1	025	.058	575	431	.663	
	int2	.003	.058	.069	.051	.959	


b value	Name	Interpretation
Constant = 4.230	Average intercept	This is the predicted value of
		achievement (DV), when
		metacognition is zero, collapsing
		across groups.
Meta Cognitive = .448	Common Slope	There is a positive relationship
_		between achievement and
		metacognition after controlling
		for student type.
e1=892	Slope for traditional	The mean for the males is less
	Males	than the grand mean, after
		controlling for metacognition.
		This was a significant difference.
e2=655	Slope for traditional	The mean for the females is less
	Females	than the grand mean, while
		controlling for metacognition but
		it is not significantly different.

Question #2: Analysis of Covariance Part 4: Regression equations and Adjusted Means

					1							
		$y' = a + b_e$	$_{1} + b_{e_{2}} + b_{met}$	acog								
		v' = 4.23089	2 – .655 +.44	48 _{metacog}								
Ma	ales	4220 002/1	1) <u>(</u> [[()])	110								
	<i>y</i> =	4.230892(1)	1) — .655(0) + 88 +. 448 _{metac}									
Fe	males	y - 5.55	0 ++0 _{metac}	og								
10		4.230 – .892(0))655(1) +	448 mataca a								
	y —		5 +. 448 _{metac}									
No	ontradi Females	<i>y</i>	metuc	oy								
	$y' = 4.230892(-1)655(-1) + .448_{metacog}$											
	$y' = 5.77 + .448_{metacog}$											
	y = 5.77 + 110 metacog											
Co	omputing Adjusted M	leans:										
		$\overline{Y_{adj.}} =$	$b_c(\bar{X}_G) + a_j$									
		$\frac{Y_{adJ(gM).}}{Y_{adJ(gM).}} = .448$										
		$\overline{Y_{adJ(gF).}} = .448$										
		$\overline{Y_{adj(gNTF).}} = .44$	48(101.8133)	+ 5.77								
A	ljusted Means											
		Y	$\overline{M_{M).}} = 48.950$	Here we have								
		$\frac{Aaaj(g)}{Y_{ad}}$	$\frac{M}{F_{1.}} = 49.187$		s for each group.							
			$\frac{F}{T} = 51.38$		it these adjusted							
		uuj(yk			com the observed ole below details							
				this relationsh								
		Report			r ·							
	Group	N 4	Achievement	meta cognitive								
	non traditional females	Mean	50.9600	100.9200								
		N Otal Davistica	25	25								
	traditional male	Std. Deviation	3.69098	6.24446								
	traditional male	Mean	48.8800	101.7200								
		N Std. Dovistion	25	25								
	traditional female	Std. Deviation	3.34564	6.38697								
		Mean N	49.6000 25	102.8000 25								
		Std. Deviation	3.67423	6.39010								
	Total	Mean	49.8133	101.8133								
	Iotai	N	49.0133	75								
		Std. Deviation	3.63055	6.30249								
		Stu. Deviation	3.03035	0.30249	1							

Lee, J., M. S.						2/22/2022
Student Type	Achievemen	t	Meta Cogni	tive	Adjusted	Difference
			_		Achievement	from grand
						mean 49.81
	М	SD	М	SD	М	
Traditional	48.88	3.35	101.72	6.39	48.95	.86
Male						
Traditional	49.60	3.67	102.80	6.39	49.187	.62
Female						
Non-Traditional	50.96	3.69	100.92	6.24	51.38	-1.57
Feamle						

This table displays the adjusted means for each of the student types, in addition to the difference between the adjusted mean and the grand mean. Here we can see that Non-traditional females and males represent the largest differences from the grand mean. We know that traditional male average achievement was statistically significantly different from the grand mean, after controlling for meta cognitive ability. We also know that traditional females average achievement was not significantly different from the grand mean, after controlling for metacognitive ability. Because the difference is greater for non-traditional females that for males, who were significantly different from the grand mean, it is recommended that an additional analysis be conducted with non traditional females as one of the coded variables.

Le	ee, J., M. S.				_			<u>2/22</u> /202
	Follow up Ar	nalysis of Nor	1 Traditional	Females		if (grou	up=1) e1 =1. up=2) e1=0. up=3) e1=-1.	
No Tra	ode Key: Effect C on-traditional Fe aditional Males aditional Female	emales = Grou = Grou	1p 1, coded 1 1p 2, coded 1 1p 3, coded -1	in e1		if (grou if (grou execute compute	<pre>up=1) e2=0. up=2) e2=1. up=3) e2=-1. int1=e1*cov int2=e2*cov</pre>	7.
		(Coefficients ^a	Standardize			REGRESSION /STATIS COEFF R AN CHANGE /DEPENDN /METHOD cov/METHOD e1 e2/METH	FICS NOVA ENT dv ENTER D=ENTER
		Unstandardize		Coefficient	S		int1 int2	-
Model		B	Std. Error	Beta		t	Sig.	
1	(Constant) meta cognitive	5.914 .431	4.561		749	1.2 9.6		
2	(Constant)	4.230	4.145		145	1.0		
2	meta cognitive	.448	.041		777	11.0		
	<u>9</u>	1.547	.359		350	4.3		
	e2	892	.357		202	-2.4		
3	(Constant)	4.201	4.198			1.0	01 .320	
	meta cognitive	.448	.041		778	10.8	85 .000	
	e1	682	5.956		154	1	15 .909	
	e2	1.648	5.913		373	.2	79 .781	
	int1	.022	.059		509	.3	76 .708	
	int2	025	.058	_	580	4	31 .668	

After recoding the variables for non traditional females, we can see that the average achievement of non traditional females was significantly different that the grand mean when controlling for meta cognition. This aligns with the foreshadowing earlier in the analysis, and helps to answer research question 2. Additionally, because non traditional females were originally considered to be of little interest to the research question, reconsideration of this variable for inclusion in analysis and future studies is justified.

Question 3: Test of the interaction

Change Statistics											
			Adjusted R	Std. Error of	R Square				Sig. F		
Model	R	R Square	Square	the Estimate	Change	F Change	df1	df2	Change		
1	.749ª	.560	.554	2.42397	.560	93.005	1	73	.00		
2	.808 ^b	.652	.637	2.18615	.092	9.374	2	71	.00		
3	.808 ^c	.653	.628	2.21409	.001	.110	2	69	.89		
	-		a cognitive, e1, a cognitive, e1,								
	-								_		

			(Coefficients ^a			
					Standardized		
			Unstandardize	d Coefficients	Coefficients		
	Model		В	Std. Error	Beta	t	Sig.
	1	(Constant)	5.914	4.561		1.297	.199
	-	meta cognitive	.431	.045	.749	9.644	.000
We can also see that the	2	(Constant)	4.230	4.145		1.021	.311
interactions coefficients are not		meta cognitive	.448	.041	.777	11.019	.000
statistically significant. (page 7)		e1	892	.357	202	-2.497	.015
		e2	655	.359	148	-1.824	.072
	3	(Constant)	4.201	4.198		1.001	.320
		meta cognitive	440	.041	.778	10.885	.000
		e1	1.648	5.913	.373	.279	.781
		e2	966	5.942	219	- 163	.871
		int1	025	.058	575	431	.668
		int2	.003	.058	.069	.051	.959
	a. Dep	endent Variable: Acl	nievement				

We can see that the prediction of achievement from meta-cognition does not change depending on what type of student you are. Instead, there are differences between the level of achievement for particular groups. (page 9 and 10)

PAGE 12

In summary, the above output indicates that prediction of achievement from metacognition is a plausible model based on this data analysis (page 3). There are differences between the three types of students on achievement when controlling for metacognition (pages 4-7). Specifically, traditional males had lower average achievement than the grand mean, after controlling for meta cognitive ability. Non traditional females had a higher average achievement than the grand mean, after controlling for meta cognitive ability. Traditional females did not have a statistically significant difference in average achievement from the grand mean, after controlling for meta cognitive ability (pages 8-9). Finally, the prediction of achievement from meta-cognition does not appear to change depending on the type of student. (page 11).