CG2271 Real-Time Operating Systems

App Controlled ESP32 WebServer and KL25Z

We have developed a basic App to control the LED connected to the ESP32 through a WebServer. We will now extend the design to control the KL25Z board.

• Serial Interface of ESP32

We will first enable the Serial Interface on the ESP32 board to send out different data packets, depending on what action we want the KL25Z board to perform. In this example, I have set aside the first 4 bits to indicate the peripheral/subsystem, and the remaining 4 bits to represent the state. The following table shows the bit patterns and their corresponding action.

Hex Value	Binary Value	Action
0x30	0b00110000	OFF Red LED
0x31	0b00110001	ON Red LED
0x32	0b00110010	OFF Green LED
0x33	0b00110011	ON Green LED
0x34	0b00110100	OFF Blue LED
0x35	0b00110101	ON Blue LED

*** This is just an example. You are free to design the protocol in any way you want. ***

When you examine the ESP32 code, you will observe that the code that checks for the client requests already transmits some data on the Serial Port using Serial2.write(). Serial2 refers to the UART module 2 for the ESP32 and it is mapped to GPIO 16 and 17 on the board. On the board, it is already labelled as TX2 and RX2.

Connect the oscilloscope to TX2 of the ESP32.

Observe the signal being transmitted whenever you send the following requests through the browser.

http://192.168.43.221/onRed -> 0x31

http://192.168.43.221/offRed -> 0x30

• Connection between ESP32 and KL25Z

In order for the ESP32 to relay the command from the App to the KL25Z, we need to connect the Tx of the ESP32 to the Rx of the KL25Z.

*** This step should only be performed after you have developed the code for the KL25Z Serial module in either Polling or Interrupt mode. ***

The HW connection is as such:

In the Lecture slides, we already went through the process to setup and configure the UART module in the KL25Z. The code implemented the polling approach and this is sufficient for the testing.

- Ensure that the baud rate is 9600bps
- Perform the HW connection as shown in the figure above.
- Configure your code in the KL25Z.

```
main()
{
    // setup code for UART, RGD LED, etc.
    while(1)
    {
        rx_data = UART2_Receive_Poll();
        /*
        Perform necessary if-else checks to compare rx_data with expected values.
        Take appropriate action if any expected value is received
        */
     }
}
```

*** Recall that in your ESP32 code, we are transmitting 0x30 and 0x31 for RED LED Off and On.***

Once the code is ready, compile and download it onto the KL25Z board. Using the Android App, you should be able to control both the ESP32 LED and the KL25Z RGB LED at the same time.

Once this is done, you can update the code to control the other LED's.

•		≈.4 8 0·4	8	
Screen1		V All 🖬 9.4		
ESP32 Web	Server A	pp		
Check WiFi Status				
LED Control				
RED ON	RE	D OFF		
GREEN ON	GRE	EN OFF		
BLUE ON	BLU	JE OFF		
BLUE ON Response fror	BLL n WebS	erver		
BLUE ON Response fror	BLI n WebS	erver		
BLUE ON Response fror	BLU n WebS	JE OFF erver		
Response fror	BLL	JE OFF erver		
Response fror	BLU	JE OFF		
BLUE ON Response fror	BLL	JE OFF erver		
BLUE ON Response fror	BLL n WebS	erver		
BLUE ON Response fror	BLL n WebS	erver		

Congratulations! You are done with the entire communication protocol that links up the App with the ESP32 and the KL25Z. Using this framework, you can extend it to control anything on the ESP32 and the KL25Z.

THE END