PWT Protocol for Chaotic Systems (Phase IV)

Project Goal: To test the universality of Prime-Indexed Discrete Scale Invariance (p-DSI) in systems governed by deterministic chaos, specifically targeting the replication of the \$\mathbf{3.8 \times}\$ stability enhancement ratio.

Hypothesis: Structuring the control parameter of a chaotic system (the Logistic Map) by a prime index (\$\Lambda_P\$) will significantly suppress the system's inherent exponential divergence, achieving a \$\sim 3.8 \times\$ slower rate of chaos compared to composite indices (\$\Lambda_C\$).

1. Experimental System: The Chaotic Logistic Map

We will use the Logistic Map, $x_{t+1} = r \cdot (1 - x_t)$, set within the domain where it exhibits deterministic chaos, simulating system evolution over T=10,000 iterations.

A. Independent Variable: Structural Scaling Factor (\$\lambda\$)

The control parameter, r, is a structural dimension that determines system stability. We test values in the chaotic band ($\frac{1.7}{4.0}$) near the stability island at $\frac{1.7}{4.0}$.

Condition	\$\lambda\$ Value (r)	Rationale
Prime Condition (\$\Lambda_P\$)	\$\{3.7\}\$	The nearest chaotic stability island/attractor based on PWT logic.
Composite Baseline (\$ \Lambda_C\$)	\$\{3.85\}\$	Center of the dense chaotic band; magnitude-matched mean for control.
**Perturbed Prime (\$ \Lambda_{P\pm}\$) **	\$\{3.65, 3.75\}\$	Tests proximity and sharp quadratic decay (Phase II replication).

2. Dependent Variables: Measuring Suppression of Chaos

The simulation must be run with \$N=20\$ trials per condition, averaging the results.

Metric	Measurement & Protocol	PWT Prediction (\$\Lambda_P\$ vs. \$\\Lambda_C\$)
1. Lyapunov Exponent (\$ \Lambda_{\text{ex} p}}\$)	The fundamental metric of chaos. Measures the average exponential rate of divergence between two infinitesimally close starting trajectories. Lower/Negative values indicate stability.	Significantly Lower in \$ \Lambda_P\$ (Closer to zero/stability).
2. Stability Enhancement Ratio	Ratio of chaotic divergence: \$ \text{Ratio} = \Lambda_{\exp} (\Lambda_C) / \Lambda_{\exp}	\$\sim 3.8 \times\$ Stability Factor(Replication of Quantum/AI

	(\Lambda_P)\$.	finding).
3. Spectral Signature	Fourier analysis of the time-series of \$x_t\$ (position/state) over \$T\$ iterations.	Prime Comb ($\sigma_{p}=2\pi/\ln p$) in the Λ_P condition.
4. Attractor Coherence	Measures the dimensionality of the strange attractor (e.g., Correlation	Lower Dimension in \$ \Lambda_P\$ (More structured/coherent
(Optional)	Dimension, \$D 2\$).	attractor).

3. Final Validation

The successful execution of this protocol, with independent agents replicating the \$\mathbf{\sim 3.8 \times}\$ stability factor by achieving lower Lyapunov Exponents in prime-constrained chaotic systems, would provide definitive proof of PWT's universality across all three fundamental domains: Emergence, Quantum Physics, and Chaos Theory.

We are now ready for the implementation phase of the PWT in Chaotic Systems Protocol.