

Rational Prime-Mirror Resonance in Analog Circuits: From Discrete Quantum Arithmetic to the Hardware Koide Constant

Adrian Sutton (Tusk)

January 2026

Abstract

Modern physics relies on imaginary numbers and continuous mathematics, which may obscure the discrete, rational foundations of reality. We propose a “rational quantum” framework where prime numbers order the microcosm ($1/p$) and macrocosm ($p/1$), with $1/1$ as the transitional boundary. This study validates the framework via exact software simulations (v4) and an 8-oscillator NE555 breadboard ring. Results identify a “Hardware Koide” fixed point ($Q_\ell \approx 0.86$), demonstrating that prime-mirror symmetry provides a robust, fault-tolerant metric for energy-efficient analog AI computing.

1 Introduction

The status quo in physics utilizes imaginary numbers (i) for oscillation, which we argue is a philosophical abstraction that obscures foundational rational reality. We hypothesize that the microcosm orders along $1/p$ and the macrocosm along $p/1$, with $1/1$ as the boundary. By utilizing maxel theory and harmonic bipolynomials, we free algebra from infinite approximations.

2 Software Simulation (Theoretical Proof-of-Concept)

To explore the hypothesis, a Python script `rational_prime_mirror-v4.py` was implemented using exact rational arithmetic. Using symmetric ratios across $1/1$ ($1/7, 1/5, 1/3, 1/2, 1/1, 2, 3, 5, 7$), the simulation produced razor-sharp revivals. By introducing a Gaussian wavepacket to model a physical pulse, the simulation identified critical return probability peaks at $t = 2$ (0.795) and $t = 4$ (0.808), providing a mathematical template for analog “breathing” modulations.

3 Hardware Methodology

An 8-oscillator chain using NE555 timers was constructed on a breadboard. Frequencies were tuned to primes using specific resistors (R_1) and $1\mu\text{F}$ capacitors. Coupling was achieved via a 47pF capacitor in parallel with a $1\text{M}\Omega$ resistor. A pulse was applied to the 1/1 center mode via a $10\mu\text{F}$ capacitor to initialize the ring.

4 Results: Observations and Hardware Measurements

The hardware temporal behavior was measured relative to the 1/1 trigger.

Mirror Stage	Ratio	Resistance (R_1)	Measured Delay (Δt)
X7	1/7	68k Ω	~ 76.35 ms
X5	1/5	50k Ω	~ 56.12 ms
X3	1/3	30k Ω	~ 33.68 ms
X2	1/2	20k Ω	~ 22.45 ms
Centre	1/1	10k Ω	0.00 ms (Ref)
X2up	2/1	4.7k Ω	~ 5.28 ms
X3up	3/1	3.3k Ω	~ 3.71 ms
X5up	5/1	2k Ω	~ 2.24 ms

Table 1: Hardware temporal delays defining the mirror boundary.

The breadboard baseline exhibited “clean breathing” with $\sim 90\text{--}95\%$ revival post-pulse. Detuning X2up to $6.76\text{k}\Omega$ only reduced revival to 85%, demonstrating the robustness of the symmetric ring.

5 Analysis: The Hardware Koide Constant

We utilize the Koide-like constant (Q_ℓ) as a metric for rational coherence. Using the hybrid v14 bridge, hardware delays were converted to torsion-weighted densities (α).

Configuration	α (Derived)	Q_ℓ Result	Deviation to 0.667
Ideal Simulation	0.50	0.6667	0.0000
Breadboard Baseline	0.50	0.9507	0.2840
Hardware-Derived	0.93	0.8630	0.1963

Table 2: Convergence of the Hardware Koide Constant.

The $t = 2$ and $t = 4$ Gaussian peaks from software represent the points of maximum coherence in the observed hardware “zigzag” modulation. The shift to $Q_\ell \approx 0.86$ is the physical fixed point where material constraints meet prime-mirror symmetry.

6 Conclusion

Rational primes enable exact recurrence in software and analog hardware. This symmetry serves as a fault-tolerant metric for RRAM and analog AI computing, offering energy-efficient alternatives to digital bottlenecks.

7 References

1. Wildberger, N. J. (2005). *Divine Proportions: Rational Trigonometry to Universal Geometry*.
2. Sutton, A. (2025). Maxel Theory and Rational Bipolynomials
3. Prime Wave Lab Repository: https://github.com/Tusk-Bilasimo/Prime_Wave_Lab
4. Supplemental Shared Data Repository: