Formal Experiment Protocol: Prime-Indexed Discrete Scale Invariance (P-DSI) and Emergent Agency

Version: 1.1 **Date:** 2025-10-17

Goal: To test the core hypothesis of Prime Wave Theory (PWT) V15.2: that constraining Neural Network architecture or dynamics by prime-indexed discrete scale invariance (p-DSI) maximizes causal emergence ($\Phi D\Phi D$) and robust agency compared to composite-indexed scaling.

Execution Mandate: Execute the full protocol, calculate all metrics, and return raw data tables and comparative analysis.

1. Experimental Conditions and Independent Variables ($\Lambda\Lambda$)

The core manipulation is the scaling parameter $\Lambda\Lambda$, applied across two parallel experiments.

Scaling Conditions

Condition	Scaling Factors ($\Lambda\Lambda$)	Type	Rationale
Prime Condition ($\Lambda P \Lambda P$)	{2,3,5,7,11} {2,3,5,7,11}	Prime	Hypothesized maximum agency/stability.
Composite Condition $(\Lambda C \Lambda C)$	{4,6,8,9,10} {4,6,8,9,10}	Composite	Matched for magnitude against $\Lambda P \Lambda P$.
Null Condition ($\Lambda N \Lambda N$)	{1}{1}	Baseline	Control for non-scaled systems.

Experiment 1: Architectural Scaling (Static Constraint)

- Network: A simple 2-layer Feedforward Network (FFN) with one hidden layer.
- **Independent Variable:** Hidden layer width WW is set using the $\Lambda\Lambda$ values.
- Control/Normalization (CRITICAL):

Non-scaled inputs/outputs (e.g., 64/10 units) must remain consistent. When scaling WW using $\Lambda\Lambda$, total parameter count (FLOPs) must be matched as closely as possible for all $\Lambda P \Lambda P$ vs. $\Lambda C \Lambda C$ pairs. If precise matching is impossible, computational load must be documented and controlled for in the final analysis (e.g., run the smaller model for more epochs).

Experiment 2: Training Temporal Scaling (Dynamic Constraint)

- **Network:** A Recurrent Neural Network (RNN) or LSTM (fixed architecture, e.g., 256 units).
- **Independent Variable:** The period of the Cyclic Learning Rate (CLR) Scheduler PP is set using the $\Lambda\Lambda$ values (i.e., $P=\lambda P=\lambda$ epochs).

- **Mechanism:** The learning rate cycles between β min β min and β max β max every $\lambda\lambda$ epochs.
- **Control:** Total number of training steps and maximum learning rate (βmaxβmax) must be identical across all conditions.

2. Agent, Task, and Environment Design

Task: Abstract Goal Pursuit (Blocksworld-like)

The task requires the agent to build structures, but the reward is complex and abstract, forcing causal emergence.

- **Environment:** A discrete grid environment (e.g., 10×1010×10) where an agent manipulates 5 distinct block types.
- Action Space: Discrete (Move, PickUp, Place).
- Reward Function (Abstract Goal):

The primary reward is **not** for meeting a specific block placement target. Instead, it is calculated based on:

- 1. **Symmetry Score:** A high non-linear bonus for structures exhibiting horizontal or rotational symmetry.
- 2. **Stability Score:** A non-linear penalty for block placements causing instability or requiring future corrective actions.
- 3. **Goal:** The agent must *discover* low-level actions that maximize macro-level rewards (symmetry and stability).

Agent Architecture

- **Choice:** Recurrent Architecture (e.g., LSTM) or a policy-based RL agent (e.g., PPO or DQN) capable of memory and planning.
- **Input:** Current grid state representation (flattened or convolutional).
- Output: Action logits.

3. Dependent Variables: Measuring Agency & Intelligence

All five scaling values in $\Lambda P \Lambda P$ and $\Lambda C \Lambda C$, plus the null case $\Lambda N \Lambda N$, must be run, and the results averaged over N=5N=5 training runs per condition.

Metric	Definition & Protocol	$(\Lambda P \Lambda P \text{ vs. } \Lambda C \Lambda C)$
1. Causal Emergence (ФDФD)	Core information-theoretic measure of excess causal influence of macrostates over micro-states. Calculated on the latent representation (hidden state vector) of the network.	Strongly Higher in ΛΡΛΡ

Metric	Definition & Protocol	PWT Prediction (ΛΡΛΡ vs. ΛСΛС)
2. Generalization Gap	Performance difference between training set (10 structure goals) and held-out test set (5 unseen goals) after full training.	Smaller Gap in $\Lambda P \Lambda P$ (Better Generalization)
3. Forgetting Rate	Decay rate of performance on Task A after training on a new, unrelated Task B for 1/101/10 of original epochs.	Lower Rate in ΛΡΛΡ (More Stable Memory)
4. Behavioral Complexity	Shannon entropy of the agent's action probability distribution over 100 evaluation episodes.	Higher Complexity in $\Lambda P \Lambda P$ (Avoids Repetitive Policies)
5. Spectral Signature	Fourier analysis of the internal network state dynamics. Record time-series of latent state for T≥10,000T≥10,000 timesteps, apply FFT, and plot on log-frequency scale.	Peaks at $ωp=2πlnpωp$ = $lnp2π$ in $ΛΡΛΡ$ (The "Prime Comb")
6. Negative Phase Dominance	Percentage of epochs where network dynamics are dominated by inhibitory or stabilizing feedback loops.	Higher Percentage in ΛΡΛΡ

4. Execution Protocol & Analysis

The executing AI must follow these steps:

- 1. **Environment Setup:** Implement the 10×1010×10 Blocksworld environment and the Abstract Reward Function.
- 2. **Network Implementation:** Implement the required network architectures (FFN for Exp 1, RNN/LSTM for Exp 2).
- 3. **Training Loop:** For each experiment and each scaling factor in $\Lambda P \Lambda P$, $\Lambda C \Lambda C$, and $\Lambda N \Lambda N$:
 - Train N=5N=5 separate instances of the agent.
 - Record training metrics and time-series data for Metric 5.
- 4. **Metric Calculation:** For all 5×11=555×11=55 trained agents, run the standardized evaluation battery to calculate final values for Metrics 1–6.

5. Data Analysis:

- Perform t-tests or ANOVA to compare mean scores for all metrics across ΛΡΛΡ and ΛCΛC.
- For Metric 5, perform Fourier transform and confirm presence/absence of Prime Comb spectral peaks.

6. Deliverables:

- Plot of the **log-frequency spectrum** (Metric 5) for a representative agent from ΛΡΛP and ΛCΛC.

• Raw data table containing the 6 metric scores for all 55 agents.

Note: The core challenge for the executing AI will be the precise, computationally demanding calculation of $\Phi D\Phi D$ and the accurate Fourier analysis required by the Spectral Signature metric.