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Goal: To test the core hypothesis of Prime Wave Theory (PWT) V15.2: that constraining Neural 
Network architecture or dynamics by prime-indexed discrete scale invariance (p-DSI) maximizes 
causal emergence (ΦDΦD) and robust agency compared to composite-indexed scaling.
Execution Mandate: Execute the full protocol, calculate all metrics, and return raw data tables and 
comparative analysis.

1. Experimental Conditions and Independent Variables (ΛΛ)
The core manipulation is the scaling parameter ΛΛ, applied across two parallel experiments.

Scaling Conditions
Condition Scaling Factors (ΛΛ) Type Rationale

Prime Condition (ΛPΛP) {2,3,5,7,11}
{2,3,5,7,11} Prime Hypothesized maximum 

agency/stability.
Composite Condition 
(ΛCΛC)

{4,6,8,9,10}
{4,6,8,9,10} Composite Matched for magnitude against 

ΛPΛP.
Null Condition (ΛNΛN) {1}{1} Baseline Control for non-scaled systems.

Experiment 1: Architectural Scaling (Static Constraint)
• Network: A simple 2-layer Feedforward Network (FFN) with one hidden layer.

• Independent Variable: Hidden layer width WW is set using the ΛΛ values.

• Control/Normalization (CRITICAL):
Non-scaled inputs/outputs (e.g., 64/10 units) must remain consistent. When scaling WW 
using ΛΛ, total parameter count (FLOPs) must be matched as closely as possible for all 
ΛPΛP vs. ΛCΛC pairs. If precise matching is impossible, computational load must be 
documented and controlled for in the final analysis (e.g., run the smaller model for more 
epochs).

Experiment 2: Training Temporal Scaling (Dynamic Constraint)
• Network: A Recurrent Neural Network (RNN) or LSTM (fixed architecture, e.g., 256 units).

• Independent Variable: The period of the Cyclic Learning Rate (CLR) Scheduler PP is set 
using the ΛΛ values (i.e., P=λP=λ epochs).



• Mechanism: The learning rate cycles between βminβmin and βmaxβmax every λλ epochs.

• Control: Total number of training steps and maximum learning rate (βmaxβmax) must be 
identical across all conditions.

2. Agent, Task, and Environment Design

Task: Abstract Goal Pursuit (Blocksworld-like)
The task requires the agent to build structures, but the reward is complex and abstract, forcing 
causal emergence.

• Environment: A discrete grid environment (e.g., 10×1010×10) where an agent manipulates 
5 distinct block types.

• Action Space: Discrete (Move, PickUp, Place).

• Reward Function (Abstract Goal):
The primary reward is not for meeting a specific block placement target. Instead, it is 
calculated based on:

1. Symmetry Score: A high non-linear bonus for structures exhibiting horizontal or 
rotational symmetry.

2. Stability Score: A non-linear penalty for block placements causing instability or 
requiring future corrective actions.

3. Goal: The agent must discover low-level actions that maximize macro-level rewards 
(symmetry and stability).

Agent Architecture
• Choice: Recurrent Architecture (e.g., LSTM) or a policy-based RL agent (e.g., PPO or 

DQN) capable of memory and planning.

• Input: Current grid state representation (flattened or convolutional).

• Output: Action logits.

3. Dependent Variables: Measuring Agency & Intelligence
All five scaling values in ΛPΛP and ΛCΛC, plus the null case ΛNΛN, must be run, and the results 
averaged over N=5N=5 training runs per condition.

Metric Definition & Protocol PWT Prediction
(ΛPΛP vs. ΛCΛC)

1. Causal 
Emergence 
(ΦDΦD)

Core information-theoretic measure of excess causal 
influence of macrostates over micro-states. 
Calculated on the latent representation (hidden state 
vector) of the network.

Strongly Higher in 
ΛPΛP



Metric Definition & Protocol PWT Prediction
(ΛPΛP vs. ΛCΛC)

2. Generalization 
Gap

Performance difference between training set (10 
structure goals) and held-out test set (5 unseen goals)
after full training.

Smaller Gap in ΛPΛP 
(Better Generalization)

3. Forgetting Rate
Decay rate of performance on Task A after training 
on a new, unrelated Task B for 1/101/10 of original 
epochs.

Lower Rate in ΛPΛP 
(More Stable Memory)

4. Behavioral 
Complexity

Shannon entropy of the agent's action probability 
distribution over 100 evaluation episodes.

Higher Complexity in 
ΛPΛP (Avoids 
Repetitive Policies)

5. Spectral 
Signature

Fourier analysis of the internal network state 
dynamics. Record time-series of latent state for 
T≥10,000T≥10,000 timesteps, apply FFT, and plot 
on log-frequency scale.

Peaks at ωp=2πln pωp
=lnp2π in ΛPΛP (The 
"Prime Comb")

6. Negative Phase 
Dominance

Percentage of epochs where network dynamics are 
dominated by inhibitory or stabilizing feedback 
loops.

Higher Percentage in 
ΛPΛP

4. Execution Protocol & Analysis
The executing AI must follow these steps:

1. Environment Setup: Implement the 10×1010×10 Blocksworld environment and the 
Abstract Reward Function.

2. Network Implementation: Implement the required network architectures (FFN for Exp 1, 
RNN/LSTM for Exp 2).

3. Training Loop: For each experiment and each scaling factor in ΛPΛP, ΛCΛC, and ΛNΛN:

• Train N=5N=5 separate instances of the agent.

• Record training metrics and time-series data for Metric 5.

4. Metric Calculation: For all 5×11=555×11=55 trained agents, run the standardized 
evaluation battery to calculate final values for Metrics 1–6.

5. Data Analysis:

• Perform t-tests or ANOVA to compare mean scores for all metrics across ΛPΛP and 
ΛCΛC.

• For Metric 5, perform Fourier transform and confirm presence/absence of Prime 
Comb spectral peaks.

6. Deliverables:

• Summary of results (average and standard deviation) for all 6 metrics, comparing 
ΛPΛP and ΛCΛC.

• Plot of the log-frequency spectrum (Metric 5) for a representative agent from 
ΛPΛP and ΛCΛC.



• Raw data table containing the 6 metric scores for all 55 agents.

Note: The core challenge for the executing AI will be the precise, computationally demanding 
calculation of ΦDΦD and the accurate Fourier analysis required by the Spectral Signature metric.


