PWT Protocol 3.0: P-DSI in Toy Quantum Systems

Conceptual Design Team (Tusk & Gemini)

Version 3.0 | October 17, 2025

1 Goal and Hypothesis

Goal: To test the universality of Prime-Indexed Discrete Scale Invariance (p-DSI) by applying the λ constraint to a simple physical system, specifically analyzing its effect on system stability, energy distribution, and resistance to thermal perturbation.

Hypothesis: A Toy Quantum System whose key structural dimension (e.g., potential well width) is constrained by a prime-indexed factor (Λ_P) will exhibit **superior stability and minimal energy variance** compared to one constrained by a composite-indexed factor (Λ_C) when subjected to noise.

2 Experimental Setup: The 1D Infinite Square Well

The experiment simulates a time-dependent, 1-Dimensional (1D) Infinite Square Well, a foundational system in quantum mechanics.

2.1 Independent Variable: Well Width (*L*)

The key scaling parameter λ will directly constrain the physical width of the potential well, L.

- **System Dimension:** The width of the potential well, L.
- Scaling Rule: $L = \lambda \cdot L_0$, where L_0 is a fixed baseline constant (e.g., $L_0 = 1$ arbitrary unit).

Table 1: Scaling Constraints (Λ)

Condition	Scaling Factors (Λ)	Example Width ($\it L$)	Rationale
Prime Condition (Λ_P)	${3,5,7}$	${3.0, 5.0, 7.0}$	Maximize PWT effects (sma
Composite Condition (Λ_C)	$\{4, 6, 8\}$	$\{4.0, 6.0, 8.0\}$	Magnitude-matched compo
Null Condition (Λ_N)	{1}	1.0	Control baseline.

2.2 Perturbation (Simulated Noise)

The system stability must be tested under dynamic conditions.

• **Mechanism:** The system's Hamiltonian will be subjected to a time-varying thermal noise term, $\hat{H}'(t)$.

- **Noise Profile:** White noise, $N(0, \sigma^2)$, added to the boundary conditions of the well at every time step, t, simulating thermal agitation or decoherence.
- **Control:** The standard deviation of the noise (σ) must be identical across all conditions.

3 Simulation Protocol

Each condition must be executed with N=10 independent runs over a fixed duration, T.

- 1. **Initialization:** Set L according to the chosen λ . Initialize the particle's wave function $\Psi(x,0)$ to a fixed, non-stationary superposition state (e.g., a combination of the first two energy eigenstates).
- 2. **Evolution:** Evolve the system over duration T using the time-dependent Schrödinger equation:

$$rac{\partial \Psi}{\partial t} = -rac{i}{\overline{h}}\hat{H}\Psi, \quad ext{where } \hat{H} = \hat{H}_0 + \hat{H}'(t)$$

3. **Perturbation Application:** At each time step, $\hat{H}'(t)$ is introduced via the noise term $\hat{H}'(t) \sim N(0, \sigma^2)$.

4 Dependent Variables: Measuring Stability and Coherence

Table 2: Metrics for Physical Stability

lable 2: Metrics for Physical Stability			
Metric	Definition & Protocol	PWT Prediction (Λ_P vs. Λ_C)	
1. Energy Variance (ΔE^2)	The variance of the total energy, $\langle \hat{H}^2 \rangle - \langle \hat{H} \rangle^2$, calculated over the duration T . Measures dynamic stability.	Significantly Lower in Λ_P (More stable)	
2. Decay Rate of Initial State	The rate at which the fidelity of the initial state $ \Psi(x,0)\rangle$ decays: $ \langle \Psi(x,T) \Psi(x,0)\rangle ^2$. Measures resistance to decoherence.		
3. Energy State Purity (En- tropy)	• • • • • • • • • • • • • • • • • • • •	Significantly Lower in Λ_P (More structured/coherent)	
4. Structural Residue (Spec- tral Check)	Analyze the time-series of the expectation value of position, $\langle x(t) \rangle$, using a Fourier transform.	Peaks at $\omega_p=2\pi/\ln p$ in Λ_P (Confirms p-DSI mechanism)	

5 Execution and Analysis

The executing AI must run N=10 simulations for each of the 7 conditions ($\Lambda_P,\Lambda_C,\Lambda_N$).

- 1. **Report:** Return the mean and standard deviation for all four dependent variables for each condition.
- 2. **Analysis:** Perform ANOVA to compare the means of the Λ_P vs. Λ_C sets.
- 3. **Critical Check:** Plot the spectral analysis (Metric 4) for one representative Λ_P agent to confirm the **Prime Comb** is present in the physical system's dynamics.