PWT Follow-Up Protocol: Testing the Boundaries of Prime-Indexed Scaling

Version: 2.0

Goal: To determine the precise transition point and stability of the p-DSI effect by testing higher-order prime constraints (Twin Primes) and small perturbations ($\pm \varepsilon \pm \varepsilon$) around prime scales.

1. Experimental Conditions and Independent Variables ($\Lambda\Lambda$)

This experiment modifies the independent variable $\lambda\lambda$ to test the theory's structural limits. The core environment (Blocksworld RL) and all 6 dependent metrics remain identical to Protocol 1.1.

New Condition Set A: Prime Perturbation Testing

This set tests the stability of the $\Phi D\Phi D$ effect when the scaling factor $\lambda\lambda$ is slightly perturbed from a prime number.

Condition	Scaling Factors ($\Lambda\Lambda$)	Type	Hypothesis
Prime Core ($\Lambda P5\Lambda P5$)	{5}{5} (Baseline from P1.1)	Prime	Max ΦDΦD (Expect ~250+~250+)
Prime Minus Epsilon $(\Lambda P - \epsilon \Lambda P - \epsilon)$	{4.9,4.95,4.99} {4.9,4.95,4.99}	Slight Composite Shift	Gradual reduction in $\Phi D\Phi D$
Prime Plus Epsilon $(\Lambda P + \epsilon \Lambda P + \epsilon)$	{5.01,5.05,5.1} {5.01,5.05,5.1}	Slight Composite Shift	Gradual reduction in $\Phi D\Phi D$
Composite Core $(\Lambda C4\Lambda C4)$	{4}{4} (Baseline from P1.1)	Composite	Min ΦDΦD (Expect ~120~120)

New Condition Set B: Higher-Order Prime Structure (Twin Primes)

This set tests if "prime clustering" (twin primes) yields enhanced effects due to the close proximity of two fundamental scale constraints.

- **Twin Prime Condition (ATPATP):** Scale the network or learning rate using a pair of factors $(\lambda 1, \lambda 2)(\lambda 1, \lambda 2)$ defined by two consecutive prime numbers separated by 22: {(5,7), (11,13),(17,19)}{(5,7),(11,13),(17,19)}.
 - **Architectural Test:** Use $\lambda 1\lambda 1$ for Layer 1 width and $\lambda 2\lambda 2$ for Layer 2 width.
 - **Temporal Test:** Use $\lambda 1\lambda 1$ for the forward pass period and $\lambda 2\lambda 2$ for the backward pass period.
- **Hypothesis:** Λ TP Λ TP will result in **super-additive \PhiD\PhiD values** (e.g., Φ D>270 Φ D>270) due to the cooperative stabilization of scales.

4. Modified Execution Protocol

1. **Train:** Run N=5N=5 instances for all 10 new conditions (Set A and Set B).

2. **Evaluate:** Run the standard evaluation battery to collect the 6 PWT metrics.

3. Analysis:

- Plot $\Phi D\Phi D$ versus the $\lambda\lambda$ value for **Set A** to visualize the $\varepsilon\varepsilon$ -sensitivity (transition function).
- Compare the mean $\Phi D\Phi D$ of $\Lambda TP\Lambda TP$ against the mean $\Phi D\Phi D$ of the single primes $\Lambda P\Lambda P$ from Protocol 1.1 using a dedicated t-test to check for the super-additive effect.