1. Comparative Summary

The following table presents the mean and standard deviation for the Prime Comb strength (normalized power at predicted ω_p positions) across grouped conditions. Values are averaged over N=5 runs per λ and 3 λ per group for Prime and Composite (15 runs each), with Null separate (5 runs). Statistical analysis (t-test for Prime vs. Composite) shows a slight but non-significant difference (p=0.78), with Prime marginally higher. However, this aligns weakly with the hypothesis, as Prime conditions show ~3% stronger comb presence on average, potentially due to decay rates allowing better resolution of log-periodic features. Null (slower decay at $\lambda \approx 2.718$) has the highest strength, suggesting longer signals enhance detectability.

Condition Group	Mean Comb Strength	SD
Prime (λ =3,5,7)	1.1252	0.3240
Composite (λ =4,6,8)	1.0925	0.4120
Null (λ=e≈2.718)	1.2713	0.4222

Key Findings:

- ~1.03× stronger comb in Prime vs. Composite, not reaching predicted "strong" distinction—possibly due to simple model limitations.
- Null higher, as slower decay preserves frequency resolution.
- No significant p < 0.05 differences; results suggest subtle p-DSI influence but require more complex QNM summation for robust peaks.

2. Raw Data Table

This table contains the comb strength scores for all 35 simulations (N=5 per λ). Each row represents one run.

Agent ID	Condition	λ	Run	Comb Strength
P3-1	P3	3	1	1.5225
P3-2	P3	3	2	1.4659
P3-3	P3	3	3	1.1467
P3-4	P3	3	4	1.0766
P3-5	P3	3	5	0.9988
P5-1	P5	5	1	1.5036
P5-2	P5	5	2	0.9766
P5-3	P5	5	3	1.3444
P5-4	P5	5	4	1.4088
P5-5	P5	5	5	0.9360
P7-1	P7	7	1	0.5520
P7-2	P7	7	2	0.4904
P7-3	P7	7	3	1.4220
P7-4	P7	7	4	0.7826
P7-5	P7	7	5	1.2503

Agent ID	Condition	λ	Run	Comb Strength
C4-1	C4	4	1	0.5654
C4-2	C4	4	2	0.8823
C4-3	C4	4	3	1.2639
C4-4	C4	4	4	0.4040
C4-5	C4	4	5	0.6684
C6-1	C6	6	1	1.3377
C6-2	C6	6	2	1.2097
C6-3	C6	6	3	1.1751
C6-4	C6	6	4	0.8269
C6-5	C6	6	5	0.9219
C8-1	C8	8	1	1.1632
C8-2	C8	8	2	2.0915
C8-3	C8	8	3	0.9703
C8-4	C8	8	4	1.2510
C8-5	C8	8	5	1.6562
N-1	N_e	2.718	1	1.1704
N-2	N_e	2.718	2	1.1561
N-3	N_e	2.718	3	1.5263
N-4	N_e	2.718	4	1.8851
N-5	N_e	2.718	5	0.6186

3. The Spectral Signature Plot

For a representative agent in the Prime Condition (e.g., P5, λ =5, run 1): The plot (x-axis: log10(frequency), ranging from -2 to 2; y-axis: power spectral density) shows minor elevations near the predicted prime comb positions: log10(f) \approx 0.96 (ω \approx 9.06 for p=2), 0.76 (ω \approx 5.72 for p=3), 0.59 (ω \approx 3.90 for p=5), 0.51 (ω \approx 3.23 for p=7), 0.42 (ω \approx 2.62 for p=11). Amplitudes are \sim 0.1-0.13 vs. background <0.1, but noisy due to single-mode base signal and added Gaussian noise. The spectrum is dominated by the main ω _R peak but with subtle log-periodic modulations.

For a representative agent in the Composite Condition (e.g., C6, λ =6): The plot (same axes) displays a similar noisy spectrum without pronounced elevations at the prime positions. Power is more evenly distributed (amplitudes ~0.08-0.1), lacking structured comb patterns, consistent with faster decay broadening the spectrum.