PWT Protocol 5.0: Black Hole Ringdown Analysis (Phase V)

This protocol simulates a Black Hole (BH) merger event and tests if the resulting gravitational wave signal decays in a manner constrained by the Prime Comb frequencies ($\omega p=2\pi/lnp$). We will submit this identical protocol to Grok and Claude for execution.

1. Project Goal and Core Hypothesis

- **Goal:** To test the universality of p-DSI by analyzing the spectral signatures of Black Hole (BH) ringdown gravitational wave (GW) signals for evidence of the Prime Comb.
- **Hypothesis:** The characteristic frequencies of the gravitational wave signal emitted during the ringdown phase of a black hole merger will contain statistically significant energy peaks corresponding to the PWT Prime Comb ($\omega p=2\pi/lnp$).

2. Experimental Setup: Simulated Ringdown Dynamics

We will simulate the gravitational wave signal h(t) emitted during the ringdown phase, which is modeled as a damped sinusoid involving complex characteristic frequencies (quasi-normal modes, or QNMs). The PWT constraint is applied to the signal's intrinsic decay factor.

A. Independent Variable: Decay Rate Factor (λ)

The simulation waveform uses the formula $h(t) \cdot A \cdot e^{-\lambda t} \cos(\omega R t)$. The scaling constraint is applied to the **decay rate factor** (λ).

Condition	Decay Rate Factor (?	(A) Rationale
-----------	----------------------	---------------

		Testing prime constraints in the energy
Prime Condition (ΛP)	$\lambda = \{3,5,7\}$	dissipation channel.
Composite Condition (ΛC)	$\lambda \propto \{4,6,8\}$	Magnitude-matched control.
Null Condition (ΛN)	λ∝{e}	Exponential decay baseline.

B. Signal Generation Protocol

- 1. Simulate a time-series representing the gravitational wave signal h(t) for each condition, using a fixed oscillation frequency ωR .
- 2. Add **Gaussian White Noise** to the signal to simulate the gravitational wave detector (e.g., LIGO) noise floor.
- 3. The λ constraint is directly enforced on the exponential decay term for the entire time-series.

3. Dependent Variables: Spectral and Stability Analysis

The core measurement is the verification of the Prime Comb signature within the gravitational wave dynamics.

Metric	Definition & Protocol	PWT Prediction (Λ P vs. Λ C)
1. Spectral Signature	Fourier analysis of the GW	Strong Prime Comb Peaks in ΛP

(confirming log-periodic structure in

Dominance ringdown signal time-series. **spacetime curvature).**

The ratio of decay suppression measured between ΛP and ΛC signals

(analogous to the $\Delta E2$ ratio ~3.8× Stability Gain (The ultimate

2. Decay Stability Ratio in Quantum Phase). Universality Check).

Total integrated power spectral density in the signal

after the dominant QNM **Lower Residue in ΛP (more coherent**

3. Minimal Energy Residue mode is subtracted. **decay).**