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Abstract

The quest to understand prime numbers has captivated mathemati-
cians for centuries. From the ancient Sieve of Eratosthenes to modern
conjectures like the Twin Prime Conjecture, primes remain a cornerstone
of number theory. In a newly released thesis titled Prime Wave Theory: A
Fourier-Analytic Perspective on the Sieve of Eratosthenes (Version 15.1,
dated October 01, 2025), author Tusk introduces an innovative framework
called Prime Wave Theory (PWT). This approach reimagines the sieve as
a “Prime Wave”—a periodic binary signal constructed via multiplicative
pulses, analyzed through Fourier methods.

PWT bridges discrete sieving with continuous analytic tools, offering
fresh insights into prime distribution, regularity, and correlations. A key
highlight is its application to twin primes (pairs like (3,5) or (11,13)),
where spectral analysis reveals connections to the Hardy-Littlewood con-
stant and gap statistics. Below, we delve into PWT’s core ideas, focusing
on the twin prime spectral analysis from the thesis’s research program.
We’ll present and describe the corrected proofs, incorporating minor fixes
for accuracy: adjusting a numerical constant in average gap estimates
(from ∼1.7 to ∼9.6) and updating the twin prime count up to 2310 (from
52 to 69 pairs).

1 The Foundations of Prime Wave Theory

At its heart, PWT transforms the Sieve of Eratosthenes into a wave-like func-
tion. Let p1 = 2, p2 = 3, . . . , pk be the first k primes, and Nk =

∏k
i=1 pi their

product (the primorial). The discrete Prime Wave Pk(n) is 1 if gcd(n,Nk) = 1
(n coprime to all primes ≤ pk), and 0 otherwise—essentially marking potential
primes after sieving up to pk.

This is built recursively: Start with a pulse for each prime (periodic functions
that are 1 except at multiples of pi), then multiply them pointwise. The con-
tinuous extension Pk(x) interpolates this over [0, Nk), enabling Fourier analysis
via Ramanujan sums.
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The thesis’s contributions include explicit Fourier representations, regularity
in function spaces (Sobolev, Hölder, Besov), interpolation inequalities, and con-
vergence theory. But the twin prime section stands out, using the correlation

C
(k)
2 (x) = Pk(x)Pk(x+2) to probe pairs coprime to Nk—a sieve approximation

to actual twin primes.

2 Twin Prime Spectral Analysis: Key Proofs
and Descriptions

The twin prime part frames C
(k)
2 (n) as an indicator for “twin-coprime” pairs,

analyzing its Fourier structure, mean density, and gaps. Below are the main
theorems with corrected proofs, described for accessibility.

2.1 Exact Correlation Function and Fourier Expansion

Theorem 1 (Theorem 2.2’). The Fourier coefficients of C
(k)
2 (x) = Pk(x)Pk(x+

2) are

Ĉ
(k)
2 (m) =

Nk−1∑
j=0

c
(k)
j · c(k)m−j · e

−2πij·2/Nk ,

where c
(k)
j = 1

Nk

∑Nk−1
n=0 Pk(n)e

−2πijn/Nk are the DFT coefficients of Pk.

Proof Description: Represent Pk(x) =
∑

j cje
2πijx/Nk . Then,

C
(k)
2 (x) =

∑
j

cje
2πijx/Nk

(∑
ℓ

cℓe
2πiℓ(x+2)/Nk

)
=
∑
j

∑
ℓ

cjcℓe
2πi(j+ℓ)x/Nke2πiℓ·2/Nk .

The m-th coefficient is

Ĉ
(k)
2 (m) =

1

Nk

∫ Nk

0

C
(k)
2 (x)e−2πimx/Nkdx =

∑
j

∑
ℓ

cjcℓe
2πiℓ·2/Nk · δj+ℓ,m,

yielding the convolution with phase e2πi(m−j)·2/Nk = e2πim·2/Nke−2πij·2/Nk . The
global phase doesn’t affect the modulus. (Fix: Negative phase on j corrects the
original sign error.) □

This spectral view allows analyzing correlations without direct enumeration,
tying into Dirichlet characters for deeper arithmetic insights.

2.2 Emergence of the Twin Prime Constant

Theorem 2 (Theorem 2.3’). The average µ
(k)
C2

= 1
Nk

∑Nk−1
n=0 C

(k)
2 (n) satisfies

µ
(k)
C2

=
1

2

k∏
i=2

pi − 2

pi
∼ C2e

−2γ

2 log2 k
,
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where γ ≈ 0.57721 is the Euler-Mascheroni constant and C2 ≈ 0.66016 is the
Hardy-Littlewood twin prime constant.

Proof Description: By Chinese Remainder Theorem, the density is the
product of local densities. For p = 2: Forbidden residue 0 mod 2, density
1/2 (n odd satisfies both). For pi ≥ 3: Forbidden 0 and -2 mod pi, density
(pi − 2)/pi.

Asymptotically:

∏
3≤p≤pk

(
1− 2

p

)
=

∏
3≤p≤pk

(
1− 1

p

)2

·
∏

3≤p≤pk

1− 2/p

(1− 1/p)2
∼ e−2γ

log2 pk
· C2,

since 1−2/p
(1−1/p)2 = 1− 1

(p−1)2 . Including 1/2: the stated form. (Fix: Proper p = 2

handling and algebraic connection.) □
This shows how the sieve density approximates twin prime density (∼ 2C2/ log

2 x),
differing by a factor of 4 due to unsieved large primes.

2.3 Spectral Gap Analysis

Theorem 3 (Theorem 2.5’). The average gap E[Gk] = 1/µ
(k)
C2

∼ 2 log2 k
C2e−2γ ≈

9.6 log2 k.

Proof Description: The density of points where C
(k)
2 (n) = 1 implies av-

erage spacing as reciprocal, uniform by Chinese Remainder Theorem. □ (Fix:
Corrected numerical constant using e−2γ ≈ 0.315, C2 ≈ 0.66, yielding ∼ 9.6.)

Corollary 1 (Corollary 2.6’). Variance Var(Gk) ≈ (E[Gk])
2 ∼ (9.6 log2 k)2 ≈

92 log4 k, assuming Poisson-like gaps.

2.4 Higher-Order Correlations

Theorem 4 (Theorem 2.8’). For constellation H = {h1, . . . , hr},

µ
(k)
H =

∏
pi≤pk

(
1− νpi

(H)

pi

)
∼ S(H) · e−rγ

logr pk
,

where νp is distinct residues mod p, and S(H) =
∏

p(1−νp/p)(1−1/p)−r. (Fix:
Removed erroneous r!.)

2.5 Computational Example

Example 2.9’: For k = 5 (N5 = 2310), twin-coprime density ≈ 0.0584 (135
pairs). Actual twin primes ≤ 2310: 69 pairs. Efficiency R5 = 69/135 ≈ 0.511,
close to heuristic ∼ 0.508. (Fix: Updated count from 52 to 69; discrepancy for
small k due to composites and asymptotics.)
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3 Implications and Future Directions

PWT’s spectral lens on twins provides a rigorous sieve framework, quantify-
ing efficiency (Rk ∼ 4e2γ/k2) and linking to deep conjectures. While finite k
approximations need error terms, this work advances Fourier-analytic number
theory. Future: Extend to polylogarithms or Riemann zeta connections.

This thesis (available via abstract) marks a promising step—primes as waves
may unlock more secrets.
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