GUIDED LECTURE NOTES ADVANCED PHARMACOTHERAPEUTICS HEART FAILURE

- 1. Heart Failure Pathophysiology
 - a. Complex syndrome structural or functional cardiac disorder that impairs the ability of the ventricles to fill or eject blood
 - b. Cardiac output is insufficient to meet the metabolic demand of the body
 - c. Determinates of Ventricular Function
 - i. Preload, afterload
 - ii. Contractility, stroke volume, CO
 - iii. Heart rate
- 2. Types
 - a. Left Ventricular Dysfunction
 - i. Increase in end systolic volume
 - ii. Increase in end diastolic volume
 - iii. Pulmonary congestion
 - iv. Decreased CO, hypoperfusion
 - b. Compensatory Systems
 - i. Sympathetic activation
 - ii. Renin-angiotensin-aldosterone system

3. Classification of Heart Failure

American College of Cardiology Foundation/American Heart Association Heart Failure Classifications Stages A-D	New York Heart Association Heart Failure Classifications Stages I-IV	Treatment Options
<u>Stage A</u> – High risk for development of heart failure; no underlying structural cardiac disease (hypertension, diabetes mellitus, hyperlipidemia, etc.)	No Correlation	Lifestyle Modifications HTN –diuretics & ACEi ACEI – IF diabetes ARBS – IF ACEI intolerant patients
<u>Stage B</u> – Structural heart disease but asymptomatic	I. Patients with cardiac disease but no limitation of physical activity	ACEI in all patients, ARBs for those who are intolerant BB in most
$\underline{\textbf{Stage C}} - \textbf{Structural heart disease with past or} \\ \text{current symptoms of heart failure}$	II. Patients with slight, mild limitation of activity causes fatigue, palpitations, dyspnea or anginal pain, comfortable with rest and with mild exertion	ACEIs and BB in all patients Diuretics, digoxin Spironolactone
	III. Patients with marked limitations of activity, fatigue, palpitations, dyspnea or angina, comfortable only at rest	
Stage D – Refractory heart failure	IV. Symptoms even at rest	Inotropes- dobutamine Entresto (sacubitril/valsartan) VADs, transplantation, hospice

- 4. Common signs and symptoms
 - a. SOB/ dyspnea/rales/orthopnea and paroxysmal nocturnal dyspnea/night cough
 - b. JVD/ neck vein distention/hepatojugular reflux
 - c. S3 gallop/cardiomegaly/ chest discomfort
 - d. Nocturia/ankle edema
 - e. fatigue, muscle weakness, or tiredness

Reduced EF HF (HFrEF)	Mid range HF (HFmrEF)	Preserved (HFpEF)
Heart failure with reduced ejection fraction	Heart failure with mid-range ejection fraction	Heart failure with preserved ejection fraction
symptoms and signs with LVEF <40%.	symptoms and signs with LVEF 40% to 49%.	symptoms and signs with LVEF >50%.
	Other features include Increased natriuretic peptides BNP >35 picograms/mL Pro BNP >125 picograms/mL	Other features include Increased natriuretic peptides BNP >35 picograms/mL Pro BNP >125 picograms/mL
	+ least one additional criterion (a) relevant structural heart disease (b) diastolic dysfunction	+ least one additional criterion (a) relevant structural heart disease (b) diastolic dysfunction

Heart failure comprises a vast array of patient presentations from patients with normal left ventricular ejection fraction (LVEF) >50% to those with reduced myocardial contractility (LVEF <40%)

5. Risk factors

- a. MI, dyslipidemia, HTN, LVH
- b. Exposure to cardiotoxic agents
- c. Drug abuse
- d. Valve disease/insufficiency
- e. Thyroid d/o
- f. FHX of heart failure

6. Pharmacological Management Heart Failure

- a. Loop Diuretics Acute & chronic management; symptomatic heart failure = immediately decrease circulating volume
- b. ACEI Chronic management of CHF = inhibiting sodium and water retention
- c. Beta Blockers Chronic management = inhibit excess adrenergic stimulation
- d. Cardiac Glycosides Chronic management = increase release of intracellular calcium
- e. Phosphodiesterase Inhibitors Chronic Management = inhibits smooth muscle contraction
- f. Vasodilators Acute and Chronic Management = vasodilation
- g. Dobutamine and Dopamine Acute and Chronic management = beta1 and dopamine receptor agonists

Mineralocorticoid receptor antagonists	Diuretics	Beta blockers	ССВ	ACEi/ARBS
Use if recent BNP>100 or ProBNP>360 (within 60 days) Carefully monitor K+ and renal function	Diuresis reduced pre-load- use with caution to prevent excessive diuresis and hypotension	Do not use unless coexistent angina symptoms	May be beneficial Evidence lacking	Use cautiously unless renal disease

7. Goals of treatment of chronic CHF

Goals of treatment of chronic CHF

Alleviate symptoms	Delay progression	Reduce mortality
Pharmacotherapeutics	control of BP in hypertensive patients	Interventions proven to have beneficial impact on survival include:
Lifestyle modifications to include dietary and nutritional modifications	weight loss in obese patients	ACE inhibitors/ARBs Beta-blockers
	treatment of dyslipidemia in	Aldosterone antagonists
Exercise	accordance with current guidelines	Nitrates Hydralazine
Health maintenance	optimization of glycemic control in	
	patients with DM	cardiac resynchronization therapy
		implantable cardioverter-defibrillators

Prevention: health targets include hypertension, diabetes, dyslipidemia, obesity/metabolic syndrome and ischemic heart disease

- 8. GOT FOR HFPEF (PRESERVED)
 - a. HFpEF is largely governed by management of associated conditions and symptoms
 - b. there is limited direct evidence to support a specific drug regimen
- 9. GENERAL PRINCIPLES FOR TREATMENT OF HFPEF:
 - a. control of pulmonary congestion and peripheral edema with diuretics
 - b. treatment of systolic hypertension
 - c. prevention of rapid heart rates, particularly in patients with atrial fibrillation
 - d. coronary revascularization in patients with coronary heart disease with ischemia judged to contribute to symptoms of HF
- 10. GOT FOR HFREF (REDUCED)
 - a. improvement of symptoms and survival
 - b. Attenuating/reversing the impact of adverse remodeling on the geometry and function of the left ventricle
- 11. INITIAL THERAPIES USED IN COMBINATION
 - a. Diuretic
 - b. Angiotensin system blocker
 - c. angiotensin receptor-neprilysin inhibitor [ARNI], angiotensin converting enzyme inhibitor or angiotensin II receptor blocker
 - d. Beta blocker
 - e. Nitrates and hydralazine
 - i. alternative to an angiotensin system blocker have demonstrated improved symptoms including reduction in hospitalization for HF and survival
- 12. TREATMENT CONSIDERATIONS
 - a. Early therapy works best
 - b. As heart failure progresses, non-selective beta blocker with both alpha and beta impact work better than Cardioselective types

c. The advent of neprilysin inhibitors (Entresto®)has dramatically decreased the risk of death and hospitalizations

13. HF MONITORING

- a. Functional capacity & Fluid status
 - i. Weight changes _____
 - ii. Jugular venous distension
- b. Cardiac rhythm
 - i. _____
- c. Laboratory tests
 - i. Electrolytes
 - ii. Creatinine
 - iii. Thyroid and liver function

14. PATIENT VARIABLES AND HEART FAILURE

- a. Coronary artery disease
 - i. Nitrites
 - ii. Aspirin
- b. Chronic atrial fibrillation
 - i. Warfarin or other new anticoagulants that reduce risk of stroke
- c. Diabetes
 - i. ACEIs
 - ii. Thiazides: may increase glucose levels
 - iii. Beta blockers avoided
- d. Hypertension
 - i. Use of diuretics early to decrease preload
 - ii. ACEIs
- e. Hyperlipidemia
 - i. Statin
- f. Infants and children
 - i. Digoxin, thiazide, and loop diuretics all used
- g. Pregnancy
 - i. ACEIs contraindicated in pregnancy
 - ii. Diuretics may decrease placental perfusion

15. PATIENT EDUCATION

- a. treatment plan
 - i. including pathophysiology and chronicity of heart failure
 - ii. home monitoring ______
 - iii.
- b. drug therapy
 - i. patients should take exactly as directed
 - ii. patient should not miss or double doses

MEDICATIONS CLASSES

- 16. Diuretics
 - a. Thiazide diuretics
 - i. HCTZ, chlorthalidone, indapamide, metolazone
 - High-dose therapy (HCTZ greater than 50) has increased risk of hypokalemia, increase in uric acid levels, and serious CV outcomes; use in combination vs pushing high doses
 - iii. Watch with patients with hyperlipidemia

- b. Potassium sparing:
 - i. often used in combination with thiazide to reverse low potassium effect
 - 1. Triamterene
 - 2. Spironolactone
 - 3. Eplerenone (Inspra): next-generation aldosterone agent, Potassium sparing, selective aldosterone blocker

- c. Diuretics ADRs: hypotension, decreased GFR, hypokalemia/hyperkalemia, electrolyte abnormalities, metabolic alkalosis, hyponatremia
 - i. Major CYP3A4 substrate
 - ii. Decreased effects with NSAIDs
 - iii. Drug effects increase with grapefruit juice, azoles, CCBs
 - iv. Increases effects of ACEI, ARB, BB, potassium replacement
 - v. Cost: approximately \$110 to \$125/month without superior outcomes
- d. Monitoring
 - i. BP, HR, edema, weight gain, dyspnea, cough, urine output
 - ii. Prior to initiating therapy
 - 1. BUN, creatinine, electrolytes (sodium, potassium, calcium, and magnesium), uric acid, and glucose levels
 - iii. Ongoing monitoring of electrolytes
- e. Patient education
 - i. Take as directed early in day if there are urination issues.
 - ii. Do not skip or double dose.
 - iii. Monitor weight.
 - iv. Must drink fluids!!
- 17. Loop diuretics Class information
 - a. Meds: Furosemide (Lasix); Bumetanide (Bumex); Torsemide
 - b. lowest dose should be titrated upward until a therapeutic effect is achieved or an adverse effect limits further titration
 - c. In patients with persistent signs of fluid overload, diuretics may be necessary.
 - d. LOOP Action: Inhibit chloride and NA++ reabsorption in the Loop of Henle, proximal and distal tubules

- 18. Loop diuretics Class information
 - i. Meds: Furosemide (Lasix); Bumetanide (Bumex); Torsemide (Demadex)
 - b. lowest dose should be titrated upward until a therapeutic effect is achieved or an adverse effect limits further titration
 - c. In patients with persistent signs of fluid overload, diuretics may be necessary.
 - d. Action: Inhibit chloride and NA++ reabsorption in the Loop of Henle, proximal and distal tubule

19. Ace Inhibitors in heart failure treatment

- a. *****ACEi have shown to decrease the morbidity and mortality associated with heart failure****
- b. Mechanism of Action inhibits angiotensin converting enzyme, interfering w/ conversion of angiotensin I to angiotensin II
- c. Reduction in GFR (as much as 30% (severe) but usually 5-25%; careful use in patients with renal artery stenosis, PCKD, nephrosclerosis

- d. Ace Inhibitors in heart failure treatment
 - i. Mechanism of Action
 - ii. inhibits
 angiotensin
 converting
 enzyme,
 interfering w/
 conversion of
 angiotensin I
 to angiotensin
 - iii. Reduction in GFR (as much as 30%

(severe) but usually 5-25%; careful use in patients with renal artery stenosis, PCKD, nephrosclerosis $\,$

- iv. *****ACEi have shown to decrease the morbidity and mortality associated with heart failure****
- e. ACEIs Pharmacodynamics
 - i. Inhibition of angiotensin-converting enzyme (ACE) activity results in decreased production of both angiotensin II (AT II) and aldosterone
 - ii. Can lower vascular resistance without decreasing cardiac output (CO) or glomerular filtration rate (GFR)
 - iii. Does not produce reflex tachycardia
 - iv. Strong evidence for CV and cerebrovascular risk reduction, HF, and slowing renal disease
 - v. Improves oxygenation to heart muscle, decreases inappropriate remodeling of heart muscle after myocardial infarction (MI) or with heart failure, reduces effects of diabetes on the kidneys
 - vi. Improves insulin sensitivity, does not affect glucose metabolism, or raise serum lipid levels

f. ACEIs Use

- i. Younger Caucasian patients
 - Patients with angina prevents formation of AT II and decreases pulmonary

Common ACEIs

Drug	Initial Dose	Maximum Dose
Benazopril	5 mg if on diuretic; 10 mg if not on diuretic	80 mg/day
Captopril	25 mg 2 to 3 times per day	450 mg/day
Enalapril	2.5 mg twice daily if on diuretic; 5 mg twice daily if not on diuretic	40 mg/day
Fosinopril	10 mg daily	80 mg/day
Lisinopril	10 mg daily	80 mg/day
Moexipril	7.5 mg prior to meal once/day	60 mg/day

- vascular resistance by decreasing retention of sodium and water and reducing extracellular fluid and preload
- 2. Patients with diabetes prevents or slows nephropathy
- 3. After MI and HF, for ventricular remodeling
- ii. Not as effective in African American patients
 - 1. When combined with a diuretic, race no longer an issue
 - 2. However, three to four times greater risk of angioedema in African Americans and Asians

- g. ACEIs Monitoring
 - Possible orthostasis within 1 hour of administration when starting and with each dosage change
- h. Patient education
 - i. Do not double dose if one is missed
 - ii. Hypotension most common ADR
 - iii. Cough common with older-generation agents
- i. Adverse drug reactions (ADRs):
 - i. dry cough (bradykinin- mediated)
 - ii. hypotension, loss of taste
 - iii. angioedema, blood dyscrasias
 - iv. teratogenicity, hyperkalemia
 - v. acute renal failure
 - vi. cholestatic jaundice, pancreatitis, rash

20. Angiotensin II Receptor Blockers

- a. Prevent binding of AT II to receptors in kidney, brain, heart, and arterial walls
- b. Inhibit the renin-angiotensin-aldosterone system (RAAS) and cause fall in peripheral resistance
- c. Evidence supports use in kidney disease until late stage and heart failure, but not all forms are renal protective like ACEI
- d. No bradykinin-mediated cough like ACEI
- e. Considered alternatives for patients who cannot tolerate ACE or become resistant
- f. Many combined with hydrochlorothiazide (HCTZ)
- g. ARB CYP450 Example
 - i. Pharmacokinetics (Losartan)
 - ii. CYP2C9
 - Extensive first-pass metabolism resulting in 33% bioavailability
 - 2. Inducers: rifampin, barbiturates
 - Inhibitors: lovastatin, sulfamethoxazole, and trimethoprim (SMZ/TMP), fluconazole, Fluvastatin, fluvoxamine, sertraline
 - iii. ADRs: similar to ACEIs
 - 1. Typically no problem with cough
 - iv. Monitoring
 - 1. Like ACEI orthostasis with dose changes
 - v. Patient education
 - 1. Do not double dose if one is missed
 - 2. Hypotension most common ADR

21. New Drug Class: Neprilysin Inhibitors

- a. Sacubitril/valsartan (Entresto) decreases hospitalizations and death in chronic HF
- b. Ejection fraction (EF) < 40%
- c. Taken in place of ACE or ARB
- d. Not given with BBs, such as carvedilol
- e. increases renal blood flow and improves diuresis
- f. Require 36-hour washout between ACE/ARB/BB

Angiotensin II Receptor Blockers

J	•	
Drug	Initial Dose	Maximum Dose
Candesartan	40 mg daily	80 mg/day
Esprosartan	600 mg daily	800 mg/day
Irbesartan	150 mg daily	300 mg/day
Losartan	50 mg daily	100 mg/day
Olmesartan	20 mg daily	40 mg/day
Telmisartan	40 mg daily	80 mg/day
Valsartan	80 mg daily	320 mg/day

- g. Sometimes called "game changer medication"
- 22. Direct Renin Inhibitors Alsikiren (Tekturna)
 - a. Also works on the RAAS
 - b. Can be used for HTN, awaiting word on HF; not same MI indication as ACEI and ARB
 - c. Does not have the same renal protective properties as ACEI
 - d. For example, ACEI must stop when creatinine rises
 - e. Same issues in pregnancy, perhaps fewer issues with potassium (K+) and cough

23. Adrenergic Antagonists- Beta Blockers

- a. Beta blockers
 - i. Action: antagonize or block the effects of catecholamines
 - ii. Can be "selective" to beta1 receptors or "nonselective" to beta1 receptors
 - iii. Mainly used for HTN and after myocardial infarction (MI)
- b. Selective vs nonselective beta blockers
 - i. Propranolol vs atenolol
- c. Clinical use
 - i. Angina, HTN, Heart failure, post-MI, anti-dysrhythmia
 - ii. Migraine prophylaxis
- d. Beta Blockers in heart failure
 - renin release from the glomerulus = less outflow from kidneys and less water retention
 - ii. heart failure mechanism is aimed at reducing the effect of sympathetic stimulation
 - reducing heart rates, myocardial energy demands, remodeling, arrythmia promotion, and RAA system

e. Beta Adrenergic Blockers

- i. First Generation (non-selective) Propranolol (Inderal); Nadolol (Coradard); Carvedilol (Coreg)
- ii. Second Generation (Beta 1 Receptor selective)– Atenolol (Tenormin); Penbutolol (Levatol);Metoprolol (Lopressor)
- iii. Third Generation (Beta and Alpha Receptor selective) Nebivolol (Bystolic)

f. Beta blocker MOA in heart failure

- i. renin release from the glomerulus = less outflow from kidneys and less water retention
- ii. heart failure mechanism is aimed at reducing the effect of sympathetic stimulation
- iii. reducing heart rates, myocardial energy demands, remodeling, arrythmia promotion, and RAA system
- iv. Action: antagonize or block the effects of catecholamines
 - 1. Can be "selective" to beta1 receptors or "nonselective" to beta1 receptors
 - 2. Mainly used for HTN and after myocardial infarction (MI)

24. CARDIAC GLYCOSIDE: Digoxin

- a. Digoxin: highly selective inhibitor of the adenosine triphosphatase (ATPase) system
- b. Inhibition of this pump results in sodium and calcium buildup inside the cell, which leads to increased contractility of heart muscle.
- c. basis for its use in two clinical situations

Pharmacological Actions:

1. Heart:

Sympathetic Stimulation

Beta -1 receptors on myocardium

- i. heart failure due to systolic dysfunction
- ii. certain supraventricular tachyarrhythmias
- d. One meta-analysis suggests that digoxin use in patients with heart failure is associated with a higher risk of all-cause mortality
- e. reduces the composite end point of mortality or hospitalizations but does not reduce allcause mortality.
- f. Dosing
 - i. Low doses
 - 1. 0.125 mg/day or every other day should be used initially if the patient is:
 - 2. over 70 years old
 - a. has impaired renal function
 - b. has a low lean body mass
 - ii. Higher doses
 - 1. 0.375 to 0.5 mg/day are rarely used or needed
 - 2. Digoxin should be used cautiously with plasma level monitoring
- g. ADRs
 - i. Gastrointestinal (GI) most common: anorexia, nausea/vomiting, diarrhea
 - ii. Central nervous system: fatigue, disorientation, depression, hallucinations, visual disturbances yellow vision and green halos around lights
 - iii. Cardiac: bradycardia, premature ventricular contractions, junctional and atrioventricular (AV) block arrhythmias, and bigeminy
 - iv. Avoid using in patients with normal left ventricular systolic function
- h. Toxicity: atrial arrhythmias/tachycardia in children
 - i. Serum concentrations greater than 1 mg/mL increase mortality.
 - ii. Initiate therapy at the lowest dose possible.
 - iii. Well absorbed orally
- i. PK/PD
 - i. NOT extensively metabolized, excreted unchanged by kidneys
 - ii. Half-life is 36 to 48 hours
 - iii. In the absence of oral or intravenous loading, steady state is achieved in four halflives or 1 week
 - iv. Reduced clearance of digoxin with drug interaction
 - 1. Quinidine, amiodarone, verapamil, diltiazem
- j. Monitoring
 - i. Diagnosis of toxicity is based on both clinical and laboratory data.
 - ii. Toxicity commonly occurs with serum levels greater than 2 ng/mL.
 - iii. Monitor potassium levels.
- k. Patient education
 - i. Take at same time each day.
 - ii. Do not double doses.
 - iii. Monitor for signs of toxicity.
 - iv. Take pulse hold for heart rate (HR) less than 60 or greater than 100 beats per minute.
- l. Baseline Parameters:
 - i. Cr, electrolytes, HR at baseline, then periodically
 - ii. serum drug levels
- m. Metabolism: liver 16% and CYP450: unknown
- n. Excretion: urine (mainly unchanged) Half-life: 1.5-2 days and 3.5-5 days if anuric