Neurological system A&P review Advanced Pathophysiology Prof. Brown-Kishbaugh MSN, FNP-C, APRN

Overview

Structural CNS (central nervous system) PNS (peripheral nervous system)

Functional

somatic autonomic

Cells of the neurological system

Neuron = transmit and receive electrical signals Neuroglia = supportive

Nerve impulse

Neurotransmitters send signals over junction and synapse

Neural Plasticity:

Central nervous system

- 3 distinct regions >> forebrain-midbrain-hindbrain
 - 2 cerebral hemispheres which allow for conscious perception of internal and external stimuli, thought and memory processes, voluntary control of skeletal muscles
 - o Deep portion is diencephalon processes incoming data
 - Midbrain >> motor and sensory tracts
 - Hindbrain >> allows sampling and comparison of sensory data from periphery and motor impulses
- Spinal cord >> nerve fiber connections from the brain to the periphery
- Protected by scalp, bony cranium, meninges, CSF, and vertebral column

Neuronal cells

Neuro stem cell Neuroblast >> Neuron Support cells Oligodendrocyte (CNS) Astrocyte (CNS) Neuroglia (CNS) Microglial (macrophage)

Schwann Cell (PNS)

Neuroglial support cells/function

- Oligodendroglia
 - oligodendrocytes
 - o Form the myelin sheath and neurolemma in the CNS
- Schwann cells
 - Form the myelin sheath and neurolemma in the PNS
- Microglia
 - Phagocytes of CNS; clear cellular debris
- Ependymal cells
 - Lining of the ventricles and choroid plexus, involved in CSF production
- Astrocytes
 - Form specialized junctions
 - Provide rapid nutrient transport
 - Believed to be essential for BBB
 - Believed to be a scar forming tissue
 - Seizure foci
 - Participate in the immune fxn of CNS
 - Appear to work w/ neurons in information and memory storage

Autonomic nervous system

- System of internal regulation for times of both rest (parasympathetic) and stress (sympathetic)
- Central control (especially hypothalamus and solitary nucleus) based on peripheral visceral afferent signals
- Primarily 2 neuron pathways
 - Preganglionic (brainstem/spinal cord) and Postganglionic (outside CNS)
 - Regulates involuntary actions
 - Internal organs (cardiopulmonary and GI)
 - Glands (lacrimal, Salivary, sweat)
- Neurotransmitters
 - o Types include monoamines, amino acids and catecholamines

Neurotransmitters (be able to define, also label excitatory, inhibitory, mixed)

Acetylcholine:

GABA (gamma-aminobutyric acid):

Glutamate:

Glycine:

Dopamine:

Norepinephrine:

Serotonin:

Sympathetic

- Signals originate in the spinal cord intermediolateral column (T1 to L2)
- Energy expending (catabolic) system
 - activated in stressful situations (fight or flight)
 - Increases HR (chronotropic), heart contraction strength (ionotropic), BP, RR and bronchodilation
 - o Increases pupil size
 - o Stimulates salivary VISCOUS secretion
 - Stimulates sweat secretion
 - o Stimulates liver gluconeogenesis and glycogenesis and fat lipolysis
 - Decreases gastrointestinal activity and secretion, and contracts gastrointestinal sphincters
 - Stimulates kidney renin release and adrenal medulla EPI release (Cholinergic postganglionic fibers)
 - Mediates ejaculation
 - Shunts blood flow to critical organs
 - Cardiac muscle and skeletal muscle vasodilation (beta-2 receptor)
 - Skin and gastrointestinal Vasoconstriction (alpha-1 receptor)

Parasympathetic

- Signals originate in the Sacral spinal cord (S2 to S4) and brain stem nuclei (cranial nerves 3,7,9,10)
- Energy conserving (anabolic) system
- activated in rest and relaxation situations
 - o Decreases pupil size and contracts ciliary muscle (accommodation)

- \circ $\:$ Stimulates salivary WATERY secretion (contrast with viscous secretion by the sympathetic system
- Decreases HR and BP
- o Stimulates bronchoconstriction and Bronchial gland secretion
- Increases gastrointestinal activity and secretion, and relaxes gastrointestinal sphincters
- Stimulates urinary contraction
- o Mediates erection

Somatic

- Motor and sensory tracts
- 12 pairs cranial nerves
- 31 pairs spinal nerves
- Motor neurons
- Afferent –transmit message to CNS
- Efferent –CNS to muscle/gland messages

Somatic Sensory function

- Peripheral sensory fibers respond to internal and external stimuli
- Touch, vibration, cold, warm, pain
- Via the ascending and synaptic relays, brings the stimuli to the sensory cortex
- Peripheral tissues generate an action potential in response to the stimuli and relay it to the central nervous system for interpretation.

Dermatomes /spinal innervation

- The surface of the skin is divided into specific areas called dermatomes, which are derived from the cells of a somite
- These cells differentiate into the following 3 regions:
 - o myotome, which forms some of the skeletal muscle
 - o dermatome, which forms the connective tissues, including the dermis
 - o sclerotome, which gives rise to the vertebrae

Aging and the Nervous system

- Size and weight of brain decreased
- Fibrosis/thickening of meninges
- Decreased # of neurons and amount of myelin
- Increased permeability into blood -brain barrier
- Vascular changes

Common complaints and workup of the neurological system

Signs/symptoms neuro

Cognition/Mental status	Tremor/seizures
Impaired mental ability	Sensory issues
LOC	Visual
Attention and concentration	Loss of sight or double vision
Memory	Speech
Visual spatial perception	Language
Executive fxn	Aphasia
Mood and thought content	Sensory issues
Muscle rigidity or Weakness	Extremities
Headaches	Lack of coordination

Tests of the neurological system

Brain imaging

CT, MRI/A

PET, SPECT

brain scan, cerebral angiography

spinal Xray

myelography

Echoencephalography(U/S), EEG, EP

CSF analysis

HEADACHES

SNOOP

- Features that should increase suspicion of a dangerous underlying headache or migraine mimic can be summarized using the mnemonic "SNOOP":
 - Systemic symptoms:
 - fever, weight loss
 - Neurologic symptoms or abnormal signs:
 - confusion, impaired alertness, or consciousness
 - Onset: sudden, abrupt, or split-second

- Older: new-onset and progressive headache, especially in patient over 50 years of age
- 4 "P"s
 - Pattern change (increased frequency)
 - Papilledema
 - Precipitating factors (Valsalva)
 - Positional aggravation

Evaluation of Dizziness

- nonspecific term and may be used by patients to indicate any of the following sensations:
- true vertigo
- lightheadedness
- Imbalance
- form of syncope/presyncope
- prevalence in the general population ranges=15% to 30%
- True vertigo is described as a rotary sensation of the patient or surroundings, and is often of vestibular origin
- Elderly population: up to 38% prevalence in the geriatric community
- Risk of falls, CVA, cervical neck D/O, deconditioning and medications
- usually, multifactorial

Symptoms of the peripheral system

- Patterns of generalized weakness that suggest a specific cause
- s/sx other than weakness that suggest a specific disorder or group of disorders Deficits in a stocking-glove distribution, which suggest diffuse axonal disorders or polyneuropathy
- Fasciculation
- Hypotonia
- Muscle wasting without hyperreflexia
- Weakness that is progressive, chronic, and unexplained
- Weakness
- evaluation of the patient presenting with a complaint of "weakness" involves 3 steps:
 - Distinguishing true muscle weakness from motor impairment due to fatigue, pain, or stiffness rather than loss of muscle power
 - Localizing the site of the lesion within the neuromuscular system that is producing weakness
 - Determining the cause of the lesion

References

Advanced Physiology and Pathophysiology: Essentials for clinical practice

Basic Pathology 10th edition Robbins

Epocrates (various topics)

Emedicine.Medscape.com (various topics)

Pathoma.com

Pathophysiology -The biologic basis for Disease in Adults and Children –McCance and Heuther,

Brashers and Rote

Understanding Pathophysiology – McCance and Heuther

UP TO DATE (various topics)

Family Practice Notebook.com (various topics)