Foreword

Many years ago, my father decided to put a birdfeeder in our backyard. It was great.
From our breakfast table we could see all kinds of birds visiting our yard. However, it
soon became the official hangout for the local squirrel population. The squirrels
would eat all of the birdfeed and chase the birds away. My brothers and I thought the
squirrels were every bit as interesting as the birds, but not my father. He referred to
them as “acrobatic vermin” and they soon became the focus of a major fami ly _= O- i SREE
ject. The project’s goal was to dESLgn a bltdfceder that was easily accesﬂbl by birds
bL'I.t IIHPOQ'ilblB to reag { L
hard could it be to outwi
I thought when our f !
work on together. We d 1
worked on it all Summer. Our k
Each design worked temp
around our defenses. Each time, _
we get together, our conversation v
for the Ultimate Squirrel-F
one simple reason: It can’t be do x ' > " _
When I first got involved with computer security, I kept thinking about the
Ultimate Squirrel-Proof Birdfeeder. The reason our designs ultimately failed each
time was actually very simple. The m

e pmject to us. It wo
s, drew plans, built and ¢
>ders ranged from,

nore challenging we made our design the more
cunning our squirrels had to be in order to defeat it. In essence, we were seeing
Darwinian theory in action. Our efforts were helping breed a smarter, craftier
squirrel. I still have this recurring nightmare that I walk into an office for a technical
mterview and there’s a squirrel sitting bchmd the

This scenario is very similar to the challenges we face in computer security. How
can we provide easy access to resources by the authorized users and still deny unau-
thorized access?

xxi




xxii Foreword

Luckily, as Solaris System Administrators, we have some excellent tools available
to us. Sun Microsystems has spent a great deal of effort in designing Solaris to be
both stable and secure. This book is your reference guide for not only securing your
Solaris systems, but also for securing the environment in which they operate. It 1s not
designed to be an introduction to UNIX or a primer on Solaris System
Adminstration, but rather a reference guide for experienced Solaris sysadmins who
need to make sure their systems are secure.

Starting with Chapter 1, we attempt to level the playing field between you and
your systems. [t begins by discussing how to evaluate your current security scheme.
One thing a hacker will always take advantage of is a sysadmin’s complaceny. We
start by going over the default settings you will find on a newly installed Solaris 8
system. We also go over the basics of testing, monitoring, and documenting security
procedures.

Next, in Chapter 2, we cover the standard security tools available from Sun
Microsystems. This includes an overview of Sun’s BSM product and a look at the fea-
tures of Sun’s Trusted Solaris 8.

In Chapter 3, we itroduce third-party security tools which are commonly used
to secure and monitor Solaris systems. This chapter not only recommends some valu-
able tools to have on hand but where to get them and how to configure them for
maximum effectiveness.

We begin discussing how to protect our resources in Chapters 4 and 5. First, by
covering how users are authenticated on a Solaris system. Then by discussing how to
configure file permissions and commonly used protocols such as FTP and NFS to
transfer information safely among our authenticated users.

Once we have our systems secure, we need to explore our options for providing
secure network services. Network users today need access to resources both on your
local network and on the Internet. Opening this door can be a tremendous headache
for a sysadmin. A major portion of this book 1s devoted to providing secure access on
both sides of your router. Chapter 6 expands our focus to how Solaris 8 operates
securely in a networked environment by providing DNS and DHCP services to net-
work clients. In Chapter 7, we learn how to configure a secure Web and e-mail
server. In Chapter 8, we narrow our networking focus by concentrating on how to
configure Solaris to be a router and provide firewalling services. Chapter 9 is totally
devoted to providing information on the configuration of the security features of
Squid, one of the most popular apps for providing Web access to users,

Knowing your opponent’s methods and tools is the first step in defeating their
efforts. Now that we've learned what tools we have available, in Chapter 10 we learn

www.syngress.com



Foreword xxiii

what tools hackers commonly use to circumvent our security. We cover the most pop-
ular methods of attack, such as Distributed Denial of Service, Ping of Death, and the
much-hated buffer overflow exploit. We discuss how they are used, what to be on the
lookout for and how to configure our Solaris systems to prevent their use against us.

Finally, in Chapter 11 we cover what we can do to prepare for that day when
hackers make it passed our main defenses. This chapter covers the configuration of a
Solaris Honeypot system using freeware or commercial products. With a well-
designed Honeypot system and some luck, we can lure our intruders away from our
real systems. If designed correctly, 1t can tie up an intruder while collecting informa-
tion on them. We can use this data later to plug the gaps they used to get in. Our
final chapter also covers the use of a popular file monitoring tool called Tripwire
which takes a snapshot of our systems and alerts us when key files have been altered.

This book comes full circle. From describing the need for improved and consis-
tent security to learning what to do when our efforts fail.

Our Ultimate Squirrel-Proof Birdfeeder Project failed for the same reason that
many security plans fail. Squirrels, like many hackers, are very curious, very single-
minded, and have a lot of time on their hands. They also tend to work together.
Eventually we figured out how to defeat them. We found that by monitoring their
efforts and changing our designs in response we were able to build our Ultimate
Squirrel-Proof Bird Feeder. The key is that’s its not one design, but an ever-changing
design. The same holds true for designing your Ultimate Hack-Proofing Solaris Plan.
It’s not something you do once and ignore. It takes constant reviewing, monitoring,
and improving. Using the information in this book you will be able to keep your
resources secure provided you understand the importance of one simple truth: The
hackers are out there and they want your sunflower seeds.

—Randy Cook, SCSA
Technical Editor

www.syngress.com



Introducing Solaris
Security: Evaluating

Your Risk

Solutions in this chapter:

'—* Exposing Default Solaris Se:

. __;ti‘lg Seﬁt‘ : ' !
. .m;ﬁhg e;da st Physical Inspections

. Dochmenting Security Procedures
- and Configurations

M Summary
Solutions Fast Track

M Frequently Asked Questions

- ?'.!--'

>

‘:r_.-r.u.".|dj.‘m"" Hari "




Chapter 1 * Introducing Solaris Security: Evaluating Your Risk

Introduction

Defaule installations of almost any operating system are prime targets for hackers,
and Solaris is no exception. These installations are usually devoid of any vendor
patches, may be running system daemons with more privilege than necessary, and
are likely to use insecure protocols. This chapter is designed to get vou to begin
thinking about Solaris in terms of security by examining the shortcomings of the
default Solaris installacion, as well as the tools available for monitoring the system.

Most intrusions will result in your Solaris systems displaying uncharacteristic
activity, therefore it is important to learn to use Solaris’s built-in monitoring tools
effectively, both in command-line and GUI modes. Effective use of monitoring
tools transcends mere detection of hacker activity, however, by providing valuable
information that will help vou to detect system bottlenecks and aid in capacity
planming as well. For these reasons, this chapter will teach you techniques you can
use to monitor Solaris effectively.

System documentation is another all-too-often-overlooked method of
increasing a Solaris system’s security. [Documentation results in a paper trail thac
will help you determine whether any of vour systems are lagging in their security
maintenance. This chaprer will introduce you to the system documentation that
should be developed and how to develop this documentation.

A defaule Solaris installation exhibits a number of security deficiencies in
many areas. This chapter will help yvou idenufv and eliminate these areas of weak-
ness by learning to think the way an attacker would.

Exposing Default Solaris Security Levels

Solaris’s installation routine has a number of configurable options that allow you
to perform all manner of configuration tasks, from setting up the network to
selecting additional software to be installed. The set-up program, however, focuses
primarily on the installation of the Seolaris operating environment, not on config-
uring security. As a result, you are left to secure the system on your own,

In this section, we will identify and discuss the default security configuration
on a newly installed Solaris system. Areas where weaknesses might exist, such as
clear text protocol authenocation, will be noted.

Altering Default Permissions

Under the UFS file system, every file has a set of associated permissions that con-
trol access to the object. These permissions are collectively known as the mode of

WWW.syngress.com



Introducing Solaris Security: Evaluating Your Risk * Chapter 1

dccess, or simply mede. A mode consists of three octal numbers that specify user,
group, and other access permissions for the file or directory. Each of these num-
bers may range from 0 to 7. Read access is specified by 4, write access by 2, and
execute access by 1. These permissions can be combined such that a mode of 5
specifies read and execute access,

Defaule permissions of the UFS file system are controlled by the umask set-
ting, which specifies the permissions inherited by new objects. These permissions
are the octal complements of the numerical values used in the chmod com-
mand. For example, umask mode of 027 gives permissions equivalent to chmod
mode of 750, or full permissions to the owner, read and execute permissions to
the group and no access to evervone else. Each user’s umask setting is controlled
by the value set in /ete/profile, which 1s 022 by default. Be aware that /ete/pro-
file settings may be overridden by setrings in the skeleton files located in
Jetc/skel. Table 1.1 summarizes the common mode and umask permissions.

Table 1.1 Common Mode and Umask Permissions

Permission Mode Setting Umask Setting
Mo Access 0 7
Execute Access 6
Write Access 2 5
Read Access 4 3
Full Control 7 0

For most organizations, the default umask of 022 may not be acceptable, as its
loose restrictions allow anyone on the system to read files generated by other
users. This certainly isnt desirable in the case of certain application system
accounts, such as an Oracle account, whose home directories may contain
sensitive data.

For similar reasons, the superuser account should always have a umask of 077,
the most restrictive possible with respect to other users. Such restrictions serve to
prevent overly curious users and those whoe might have malicious intent from
reading files or executing programs that should be restricted to root use only.
Therefore, best practices indicate changing the default umask for all users in
Jetc/profile as well as the default skeleton files in the /etc/skel directory to a
more restrictive value, such as 027 or 077.

WWW.SYynNgress.com



Chapter 1 * Introducing Solaris Security: Evaluating Your Risk

Making Services Available after Installation

Many system daemons are installed by default on a stock Solaris installation, but
some will require minor adjustments to run in a more secured mode. There are
other daemaons, such as Apache, that are not installed by default but may be desir-
able to run. This section will describe how to tweak some of the stock system
services, as well as how to configure Apache for simple tasks.

Using Solaris as an FTP Server

Occasions often arise where files need to be transferred from one system to
another, and File Transfer Protocol (FTP) has become the customary way to copy
files between systems. Although Selaris includes by default a complete FTP ser-
vices facility, its use 1s not recommended because FTP is a cleartext protocol that
can easily be subverted by hackers using commeonly available snifting tools. Secure
copy (SCP), described in Chapter 6, is a more preferable form of file transfer
because the data is encrypted as well as the passwords and commands. There are,
however, instances in which FTP services are a necessary function, so this section
will discuss how to use Solaris’s FTP functonality as securely as possible.

Access to the FTP server can be restricted using the /etc/ftpusers file. Any
user account listed in this file will not be authorized to use Solariss FTP services.
Solaris 8 lists the superuser account and many of the system accounts in this file
by default. The most secure way to control FTP access is to list all system and
user accounts in /etc/ftpusers and then remove only the accounts that require
access to FTP services. If there is no need for FT'P access, it should be disabled
completely by commenting out the FTP service in /etc/inetd.cont.

SECURITY ALERT!

Prior to release 8, Solaris allowed FTP access by the root user as the
default. It is critical that this access is immediately disabled on older sys-
tems by placing the root account in /etc/ftpusers as soon as possible.
Allowing the root account FTP access not only allows the root password
to be sniffed during a transfer session, but also leaves the system open
to compromise by brute force attempts to guess the root password.

www.syngress.com



Introducing Solaris Security: Evaluating Your Risk *+ Chapter 1

Using Telnet to Access a Solaris System

Perhaps even more common than FT'P access is Telnet access, which allows users
to connect to the system remotely and execute commands as if they were on the
system console. Unfortunately the Telnet protocol, like the FTP protocol, is a
cleartext protocol that allows passwords to be easily sniffed from the network. In
addition to passwords, a user’s entire session can be sniffed from the network,
allowing others to remotely “watch over the user’s shoulder.” Because of this, you
should seriously consider replacing Telnet access with an encrypted protocol such
as SSH, as described in Chapter 6. Barring that, this section will discuss how the
Solaris Telnet server 1s operated.

The Telnet daemon is typically operated from inetd, the Internet super-server,
which launches Telnet daemon sessions as necessarv. A Solaris installation will
activate the Telnet server by default, but it can be disabled by commenting out
the following entry for Telnet in /etc/inetd.conf:

telnet stream topd nowait root Jusr/sbin/in.telnetd in.telnetd

From this entry we can determine that Telnet supports [Pv6 and is accessible
from a Transmission Control Protocol (TCP) stream. Specifying nowait status
allows multple Telnet sessions to run concurrently. Telnet service is run as root
using the system binary /usr/sbin/in.telnetd as a Telnet daemon program.

You may notice that root logins are by default not allowed via the Telnet
server. This default security setting prevents brute force attacks on the root
account from succeeding by denving all root logins, regardless of whether the
password supplied is valid or not. Enabling root logins via Telnet 1s not recom-
mended because 1t opens the system to brute force attacks on the root password
and allows the root password to be sniffed from the wire. If absolutely necessary,
root Telnet logins can be enabled by commenting out the CONSOLE section of
Jete/default/Togin,

Authentication for the Telnet service is provided by pluggable authentication
modules (PAM) and configured in /ete/pam.conf. PAM ensures that accounts are
validated with valid passwords before allowing access to the Solaris system. In a
default installation, no Telnet-specific entries are listed in /etc/pam.conf, so the
Telnet service uses the authentication methods specified as “other” services. These
entries are generally adequate, but in certain cases (such as when using Kerberos
for authentication), it might be desirable to explicitly configure a Telnet policy
through PAM. This can be accomplished by adding new entries to /etc/pam.conf
that begin with “telnet” and point to the PAM libraries appropriate for your

desired use.
WWW.Syngress.com



Chapter 1 * Introducing Solaris Security: Evaluating Your Risk

Notes from the Underground...

Using dsniff to Capture Passwords

You may be wondering just why | keep complaining about the insecurity
of cleartext protocols such as FTP and Telnet. After all, how easy can it
be to decode this binary information off the wire? Actually, it's very easy,
thanks (or no thanks, depending on your point of view) to a freely avail-
able tool called dsniff. The homepage for dsniff is www.monkey.org/
~dugsong/dsniff/ and Solaris binary packages are available at
www.sunfreeware.com/programlistsparc8.html#dsniff. You can use
dsniff to capture login and password combinations and other data from
just about any cleartext protocol, including FTP, Telnet, SMTP, HTTF, POP,
poppass, NNTP, IMAP, SNMP, LDAP, Rlogin, RIP, OSPF, PPTP MS-CHAP,
NFS, YP/NIS, SOCKS, X11, CVS, IRC, AIM, 1CQ, Napster, PostgreSQL,
Meeting Maker, Citrix ICA, Symantec pcAnywhere, NAI Sniffer, Microsoft
SMB, Oracle SQL*Net, Sybase, and Microsoft SQL. In this example, | will
show how FTP and Telnet passwords are captured, though the other
protocols are just as easy to violate. Figure 1.1 shows the actual login
sessions from the user’s perspective. Note that the user is completely
unaware that his passwords have been sniffed. Figure 1.2 is the dsniff
output of the passwords captured during the user's sessions.

Figure 1.1 User’s Perspective of the Login Session

Continued

WWW.syngress.com



Introducing Solaris Security: Evaluating Your Risk * Chapter 1

Figure 1.2 The dsniff Output of the Passwords Captured during the
User's Sessions

Here we can see that dsniff easily determined that the password for
the user scarter is weakpwd. How can you protect against these types of
attacks? Above all, you should secure your systems. Because dsniff
requires the network interface to operate in promiscuous mode, the
hacker would need root access to capture passwords. If your systems are
secured, you can hopefully prevent attackers from gaining superuser
status. Using an entirely switched network also alleviates a large portion
of the risk, since the hacker can sniff only one host at a time from each
compromised host.

Working with Default Environmental Settings

Depending on the interactive shell used, various global configuration files can
aftect the security of a user’s environment. For Bourne-based shells such as
/bin/sh, /bindksh, and /bin/bash (if installed) the global configuration fle for
user environments is /etc/profile. These environment settings are evaluated before
the user’s local settings (SHOME/ .profile) for Bourne-derivative shells, and may
be overridden by the local user settings. While we have already discussed making
modifications to the umask setting in this file, there are a few minor security
tweaks that vou may wish to implement.

www.syngress.com



Introducing Solaris Security: Evaluating Your Risk * Chapter 1

Summary

The goals of this chapter were to introduce you to good security practices and to
begin orienting you to think with a “security first!” mindset, because if your sys-
tems aren'’t secure, then neither is your business. We've also covered a lot of
ground in this chapter with respect to hardening Solaris hosts.

We've exposed the detault Solaris security levels by noting that the umask
setting allows any user to read any other user’s files by default. To keep your users
honest, we've looked into displaying Authorized Use banners where appropriate.

Our evaluation of Solaris security configuration showed us that cleartext pro-
tocols like Telnet and FTP are extremely insecure. To combat attacks from the
external network, we've also learned to shut off unnecessary system daemons
(such as finger and chargen), and to demote some programs (such as Sendmail) to
run with lower privileges.

Monitoring our system security has taught us to examine the access logs and
the sulog to note signs of preliminary system invasion. We introduced GUI moni-
toring tools such as sdtperfineter and sdrprocess. Failed logins should now be logged
in /var/adm/loginlog.

Our Solaris system security was tested by informing our users about choosing
strong passwords and then using a password cracking program against the
Jete/shadow file to ferret out any of our user’s poor password choices. We also
looked at tracking insecure file permission modes using the find command.

Similarly, we tightened the OpenBoot PROM security by requiring a pass-
word to make modifications to the system’s PROM settings, or when choosing to
boot from any media other than the default. We also looked into adding another
Authorized Use banner to dissuade intrusion, and discussed how systems can be
cracked if the intruder has enough physical access to the system.

Finally, we learned how to document our Solaris systems by taking periodic
snapshots of system performance using command-line tools. We also learned how
to document and track changes to the system in such a way that unauthorized
changes can be easily identified.

27




30 Chapter 1 * Introducing Solaris Security: Evaluating Your Risk

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form.

Q: Why is it necessary for me to secure my Solaris system? 1 don’t have any data
that anyone would want to steal.

A: Not all system cracking is about stealing information, and many hackers don't
care at all about the specifics of your system beyond it’s Internet connection.
Some attackers want to steal vour bandwidth to distribute pirated music and
software, while others are just trying to impress their friends. If your systems
are connected to the Internet they will be attacked; its only a matter of time.
Most of these attacks are likely to come from inexperienced attackers who
are casily averted ifyoussystem has been kept up-to-date with Sun’s security
patches.

Q: What's wrong with sgtting the a¢éess mode of a file or directory to 7777
Everyone needs to have access to this file or directory, and this is a solution
that works fine for our setup,;

A: While setting files or dlrectoneq to aceess mode 777 i 15 a quick fix for many
permissions-based problems, it is a poor solution at best and a gaping security
q hole at worst, especially if any of these worldswritable files are also SUID or
SGID. World-readable files are commonplace, arid in general, as long as these
q files do not hold confidential or crucial system inﬂ)}"'i“?mtion, allowing
. everyone read access to these files is acceptable. However, I can think of no
cases where any file or directory (outside of /tmp) should be writable by
everyone. When vou discover a permissions-based problem, instead of using
2 mode 777 for a quick fix investigate further and determine who requires
access. Then, create a new group for these personnel and set the group per-
missions accordingly. You may deem it necessary to make a particular file or
directory group-writable, which is acceptable in many cases and certainly
much more secure than making the file or directory world-writable.

Www.syngress.com



