\qquad

Notes: Properties of Real Numbers

Do Now: Solve the following equation for x.

$$
6+5(7+2 x)=8 x-13
$$

Match the properties on the left with their corresponding math on the right.
\qquad Commutative Property of Addition
A) $a \cdot 0=0$
___ Associative Property of Addition
B) $a+(b+c)=(a+b)+c$
___ Commutative Property of Multiplication
C) $a(b+c)=a b+a c$
___ Associative Property of Multiplication
D) $a+b=b+a$
\qquad Distributive Property
E) $a \cdot 1=a$
\qquad Identity Property of Addition
F) $a+0=a$
\qquad Identity Property of Multiplication
G) $(a b) c=a(b c)$

Zero Property of Multiplication
H) $a b=b a$

What Should I Be Able to Do?

- I can explain the commutative property and give one addition and one multiplication example.
- I can explain the associative property and give one addition and one multiplication example.
- I can explain the distributive property and give an example.
- I can explain the identity property and give one addition and one multiplication example.
- I can explain the inverse property and give one addition and one multiplication example.
- I can explain the zero property and give an example.
- I can explain the addition property of equality and give an example.
- I can explain the subtraction property of equality and give an example.
- I can explain the multiplication property of equality and give an example.
- I can explain the division property of equality and give an example.

Properties of Real Numbers

1) Commutative: Numbers can be added or multiplied in any order.

2) Associative: Add or multiply regardless of how the numbers are grouped. $+$
\times

3) Identity: When you add/multiply to obtain the same number. $+$
\times
4) Inverse: When you add/multiply to obtain the identity.

$+$

5) Distributive: Multiply a sum or difference by multiplying each addend separately and then add the products.
6) Zero Property: Any value multiplied by 0 has a product of 0 .
7) Addition Property of Equality: Add the same quantity to both sides of the equation.
8) Subtraction Property of Equality: Subtract the same quantity to both sides of the equation.
9) Multiplication Property of Equality: Multiply the same quantity to both sides of the equation.
10) Division Property of Equality: Divide the same quantity to both sides of the equation.

Checkpoint:

1 When solving the equation $5(x-6)+5=9$, Mary wrote $5(x-6)=4$ as her first step. Which property justifies Mary's first step?
(1) subtraction property of equality
(2) distributive property of multiplication over subtraction
(3) associative property
(4) multiplication property of equality

2 A part of Bianca's work to solve the equation $3\left(7 x^{2}-10\right)=15 x^{2}-8 x$ is shown below
Given: $3\left(7 x^{2}-10\right)=15 x^{2}-8 x$
Step 1: $21 x^{2}-30=15 x^{2}-8 x$
What property did Bianca use to obtain step 1 ?
(1) addition property of equality
(2) distributive property of multiplication over subtraction
(3) associative property
(4) multiplication property of equality

3 Given $\llbracket \neq 0$, the equation where $\nabla(■)=\llbracket$ is an example of the
(1) associative property
(2) inverse property
(3) identity property
(4) zero property

4 When solving for the value of x in the equation $-5(3 x-9)+5=65$, Guillermo wrote the following lines on his paper.

$[$ line 1]	$-5(3 x-9)+5=65$
$[$ line 2]	$-5(3 x-9)=60$
$[$ line 3]	$-15 x-45=60$
$[$ line 4]	$-15 x=105$
[line 5]	$x=-7$

Between which two lines did Guillermo make a mistake using a property, which resulted in the incorrect answer?
(1) line 1 - line 2
(3) line 3 - line 4
(2) line 2 - line 3
(4) line 4 - line 5

Success Criteria

- I can explain the commutative property and give one addition and one multiplication example.
- I can explain the associative property and give one addition and one multiplication example.
- I can explain the distributive property and give an example.
- I can explain the identity property and give one addition and one multiplication example.
- I can explain the inverse property and give one addition and one multiplication example.
- I can explain the zero property and give an example.
- I can explain the addition property of equality and give an example.
- I can explain the subtraction property of equality and give an example.
- I can explain the multiplication property of equality and give an example.
- I can explain the division property of equality and give an example.
\qquad

Classwork: Properties of Real Numbers

1 State whether each statement is true or false. If true, state the property of real numbers that proves the statement true. If false, give a counterexample.
a For all real numbers $x, x(1)=x$.
b For all real numbers a, b, and $c,(a b) c=a(b c)$.
c For all real numbers g and $h,-2(g-h)=-2 g-2 h$.

2 Which equation illustrates the additive inverse property?
(1) $\Omega\left(\frac{1}{\Omega}\right)=1$
(2) $\Omega+(-\Omega)=0$
(3) $\Omega+\Omega=2 \Omega$
(4) $\Omega(\Omega)=\Omega^{2}$

3 The equation $\vartheta(■+\Delta)=\vartheta \llbracket+\vartheta \Delta$ is an example of the
(1) associative property
(2) commutative property
(3) distributive property
(4) identify property of multiplication

4 Juliane is solving the equation $2(3 x-9)=-6$ is shown below. Identify the property used to obtain each of the steps.
$2(3 x-9)=-6$
$6 x-18=-6$
$6 x=12$
$x=2$

5 When solving the equation $(5+7)+10=x$, Ben rewrote the equation $5+(7+10)=x$ as his first step. Which property justifies Ben's first step?
(1) addition property of equality
(2) distributive property of multiplication over addition
(3) associative property
(4) commutative property

6 A part of Hank's work to solve the equation $5\left(2 x^{2}-10 x\right)=35 x^{2}-25$ is shown below
Given: $5\left(2 x^{2}-10 x\right)=35 x^{2}-25$
Step 1: $2 x^{2}-10 x=7 x^{2}-5$
What property did Hank use to obtain step 1?
(1) division property of equality
(2) distributive property of multiplication over subtraction
(3) associative property
(4) subtraction property of equality

7 When solving for the value of x in the equation $-6(x-5)+2(4 x+3)=12$, Layla wrote the following lines on his paper.
[line 1] $\quad-6 x+30+8 x+6=12$
[line 2] $2 x+36=12$
[line 3] $2 x=48$
[line 4] $\quad x=24$

Which property did Layla perform incorrectly, which resulted in the incorrect answer?
(1) line 1 - line 2
(2) line 2 - line 3
(3) line 3 - line 4
(4) Laya did not make a mistake.

8 Write an equation that displays the commutative property.

Name:
Date: \qquad

Homework: Properties of Real Numbers

1 Janita simplified an equation to $-b+b=0$. Which property of real numbers is shown by this equation?
(1) additive identity property
(2) multiplicative identity property
(3) additive inverse property
(4) multiplicative inverse property

2 Given the following equations:
I. $a+b=b+a$
III. $5 a\left(8 a^{2}\right)=8 a^{2}(5 a)$
II. $a+(b+c)=(a+b)+c$
IV. $a b=b a$

Which equations(s) represent the commutative property?
(1) I and IV, only
(3) I, II, III, and IV
(2) II, only
(4) I, III, and IV

3 Brittany is solving the equation $(7-4 x) 2=-34$ is shown below. Identify the property used to obtain each of the steps.
$(7-4 x) 2=-34$
$2(7-4 x)=-34$
$14-8 x=-34$
$-8 x=-48$
$x=6$

4 When solving the equation $7\left(2 x^{2}-4\right)-11=5 x^{2}-2$, Emilia rewrote the equation $7\left(2 x^{2}-4\right)=5 x^{2}+9$ as her first step. Which property justifies Emilia's first step?
(1) distributive property of multiplication over subtraction
(2) addition property of equality
(3) associative property
(4) division property of equality

5 State whether each statement is true or false. If true, state the property of real numbers that proves the statement true. If false, give a counterexample.
a For all real numbers x and $y, x(y)=y+x$.
b For all real numbers $a, a+0=a$.
\mathbf{c} For all real numbers x, y, and $z, x(y+z)=x y+x z$.

6 The equation $\sqcup \Pi=\Pi \sqcup$ is an example of the
(1) associative property
(2) commutative property
(3) distributive property
(4) identity property of multiplication

7 Which equation correctly illustrates the distributive property?
(1) $\mathrm{w}(\mathrm{x})=\mathrm{x}(\mathrm{w})$
(2) $-w(x-y)=-w x-w y$
(3) $w(x+y)=w x-w y$
(4) $-w(-x-y)=w x+w y$

