Name: Dat	e:
-----------	----

Notes: Properties of Real Numbers

Do Now: Solve the following equation for x.

$$6 + 5(7 + 2x) = 8x - 13$$

Match the properties on the left with their corresponding math on the right.

Commutative Property of Addition

Associative Property of Addition

B)
$$a + (b + c) = (a + b) + c$$

Commutative Property of Multiplication

$$C) \ a(b+c) = ab + ac$$

Associative Property of Multiplication

D)
$$a + b = b + a$$

Distributive Property

$$\mathsf{E)} \ a \cdot 1 = a$$

Identity Property of Addition

F) a + 0 = a

Identity Property of Multiplication

 $\textbf{G)} \ (ab)c = a(bc)$

7 Zero Property of Multiplication

H) ab = ba

What Should I Be Able to Do?

- I can explain the commutative property and give one addition and one multiplication example.
- I can explain the associative property and give one addition and one multiplication example.
- I can explain the distributive property and give an example.
- I can explain the identity property and give one addition and one multiplication example.
- I can explain the inverse property and give one addition and one multiplication example.
- I can explain the zero property and give an example.
- I can explain the addition property of equality and give an example.
- I can explain the subtraction property of equality and give an example.
- I can explain the multiplication property of equality and give an example.
- I can explain the division property of equality and give an example.

Properties of Real Numbers

Think "Commute" which means to PHYSTCALLY 1) Commutative: Numbers can be added or multiplied in any order. 10 Commutative: Numbers can be added or multiplied in any order.

$$5(2)=10$$
 $2(5)=10$ $5(2)=2(5)$ $ab=ba$

2) Associative: Add or multiply regardless of how the numbers are grouped.

3) Identity: When you add/multiply to obtain the same number.

4) Inverse: When you add/multiply to obtain the identity.

5) **Distributive:** Multiply a sum or difference by multiplying each addend separately and then add the products.

6) **Zero Property:** Any value multiplied by 0 has a product of 0.

7) Addition Property of Equality: Add the same quantity to both sides of the equation.

8) **Subtraction Property of Equality:** Subtract the same quantity to both sides of the equation.

9) **Multiplication Property of Equality:** Multiply the same quantity to both sides of the equation.

10) **Division Property of Equality:** Divide the same quantity to both sides of the equation.

Checkpoint:

- 1 When solving the equation 5(x-6)+5=9, Mary wrote 5(x-6)=4 as her first step. Which property justifies Mary's first step?
- 1) subtraction property of equality
- (2) distributive property of multiplication over subtraction
- (3) associative property
- (4) multiplication property of equality
- 2 A part of Bianca's work to solve the equation $3(7x^2 10) = 15x^2 8x$ is shown below

Given:
$$3(7x^2 - 10) = 15x^2 - 8x$$

Step 1: $21x^2 - 30 = 15x^2 - 8x$

What property did Bianca use to obtain step 1?

- (1) addition property of equality
- (2) distributive property of multiplication over subtraction
- (3) associative property
- (4) multiplication property of equality
- 3 Given $\blacksquare \neq 0$, the equation where $\nabla(\blacksquare) = \blacksquare$ is an example of the
- (1) associative property
- (2) inverse property
- (3) identity property (4) zero property
- 4 When solving for the value of x in the equation -5(3x-9)+5=65, Guillermo wrote the following lines on his paper.

 [line 1] -5(3x - 9) + 5 = 65[line 2] -5(3x - 9) = 60[line 3] -15x - 45 = 60[line 4] -15x = 105

[line 1]
$$-5(3x-9)+5=65$$

[line 2]
$$-5(3x-9) = 60$$

[line 3]
$$-15r - 45 = 60$$

$$\begin{bmatrix} 1 & 1 & -15x = 105 \end{bmatrix}$$

[line 4]
$$-15x = 105$$

x = -7[line 5]

Between which two lines did Guillermo make a mistake using a property, which resulted in the incorrect answer?

$$(3)$$
 line 3 – line 4

(4) line
$$4 - \text{line } 5$$

Success Criteria -I can explain the commutative property and give one addition and one multiplication example. Numbers can be added or multiplied in any order. 10+11=11+10 - I can explain the associative property and give one addition and one multiplication example. Add or multiply regardless of how the numbers are groupe (2+5)+9=2+(5+4) (2.5).9:2.(5.9 - I can explain the distributive property and give an example. Multiply a sum of a difference by multiplying each addend separately and then add the products. 7(x+9) = 7x+89 - I can explain the identity property and give one addition and one multiplication example. When you add or nultiply to obtain the same number. 6+0=6 6(1)=6 - I can explain the inverse property and give one addition and one multiplication example. When you add or multiply to obtain the identify. - I can explain the zero property and give an example. Any value multiplied by 0 has a product 500 (0)=0 -I can explain the addition property of equality and give an example. Add the Seme quantity to both sides of an example. +7 +7 - I can explain the subtraction property of equality and give an example. Subtreet the Same questing to both Sides of an example. X+7=8 - I can explain the multiplication property of equality and give an example. Multiply the same quantity to both sides of an equation.

- I can explain the division property of equality and give an example.

Divide the Same quantity to both Sides

Classwork: Properties of Real Numbers

1 State whether each statement is true or false. If true, state the property of real numbers that proves the statement true. If false, give a counterexample.

a For all real numbers x, x(1) = x.

True, Zero Proper \uparrow

True, Associative Property of Multiplication

c For all real numbers g and h, -2(g-h) = -2g - 2h.

False, -2(9-h)
-29+2h +-29-2h

2 Which equation illustrates the additive inverse property?

(1)
$$\Omega\left(\frac{1}{\Omega}\right) = 1$$

(2) $\Omega + (-\Omega) = 0$
(3) $\Omega + \Omega = 2\Omega$
(4) $\Omega(\Omega) = \Omega^2$

- 3 The equation $\vartheta(\blacksquare + \triangle) = \vartheta \blacksquare + \vartheta \triangle$ is an example of the
- (1) associative property
- (2) commutative property
- (3) distributive property
- (4) identify property of multiplication

4 Juliane is solving the equation 2(3x-9)=-6 is shown below. Identify the property used to obtain each of the steps.

$$2(3x-9)=-6$$

$$6x - 18 = -6$$

$$6x = 12$$

$$x = 2$$

Property of Equalit

- 5 When solving the equation (5+7)+10=x, Ben rewrote the equation 5+(7+10)=x as his first step. Which property justifies Ben's first step?
- (1) addition property of equality
- (2) distributive property of multiplication over addition
- (3) associative property (4) commutative property
- 6 A part of Hank's work to solve the equation $5(2x^2 10x) = 35x^2 25$ is shown below

Given:
$$5(2x^2 - 10x) = 35x^2 - 25$$

Step 1: $2x^2 - 10x = 7x^2 - 5$

- What property did Hank use to obtain step 1?
- (1) division property of equality
- (2) distributive property of multiplication over subtraction
- (3) associative property
- (4) subtraction property of equality
- 7 When solving for the value of x in the equation -6(x-5) + 2(4x+3) = 12, Layla wrote the following lines on his paper.

[line 1]
$$-6x + 30 + 8x + 6 = 12$$

[line 2] $2x + 36 = 12$
[line 3] $2x = 48$

[line 2]
$$2x + 36 = 12$$

[line 3]
$$2x = 48$$

$$\begin{bmatrix} \text{line } 3 \end{bmatrix} \qquad 2x = 46$$

$$\begin{bmatrix} \text{line } 4 \end{bmatrix} \qquad x = 24$$

- Which property did Layla perform incorrectly, which resulted in the incorrect answer?
- (1) line 1 line 2
- (2) line 2 line 3
- (3) line 3 line 4
- (4) Laya did not make a mistake.

Name:	Date:
-------	-------

Homework: Properties of Real Numbers

- 1 Janita simplified an equation to -b + b = 0. Which property of real numbers is shown by this
- additive identity property
 multiplicative identity property
- (3) additive inverse property
- (4) multiplicative inverse property
- 2 Given the following equations: a + b = b + a

$$a + b = b + a$$

II. $a + (b + c) = (a + b) + c$

✓ III.
$$5a(8a^2) = 8a^2(5a)$$
IV. $ab = ba$

Which equations(s) represent the commutative property? (1) I and IV, only (3) I, II, III, and IV

- (2) II, only
- (4) I, III, and IV
- 3 Brittany is solving the equation (7-4x)2 = -34 is shown below. Identify the property used to obtain each of the steps.

$$(7-4x)2 = -34$$

$$2(7 - 4x) = -34$$

$$14 - 8x = -34$$

$$-8x = -48$$

$$x = 6$$

- 4 When solving the equation $7(2x^2 4) 11 = 5x^2 2$, Emilia rewrote the equation $7(2x^2 - 4) = 5x^2 + 9$ as her first step. Which property justifies Emilia's first step?
- distributive property of multiplication over subtraction
- (2) addition property of equality (3) associative property
- (4) division property of equality

5 State whether each statement is true or false. If true, state the property of real numbers that proves the statement true. If false, give a counterexample.

a For all real numbers x and y, x(y) = y + x.

b For all real numbers a, a + 0 = a.

The Littly Property of Addition

c For all real numbers x, y, and z, x(y + z) = xy + xz.

The Distributive Property

- **6** The equation $\Box \Box \Box \Box \Box$ is an example of the
- (1) associative property
- 2 commutative property
 (3) distributive property
- (4) identify property of multiplication

7 Which equation correctly illustrates the distributive property?

$$(y)w(x) = x(w)$$

 $(y) - w(x - y) = -wx - wy$
 $(y)w(x + y) = wx - wy$
 $(4) - w(-x - y) = wx + wy$