Homework: Introduction to Logarithms

Write each equation in logarithmic form.

1)
$$5^3 = 125$$

$$2) e^x = y$$

3)
$$\chi^{\frac{1}{2}} = \frac{1}{49}$$

3)
$$x^{\frac{1}{2}} = \frac{1}{49}$$
 4) $b^{-3} = \frac{1}{a}$

Write each equation in exponential form.

$$5)\log_{11} 121 = 2$$

5)
$$\log_{11} 121 = 2$$
 6) $\log_{\frac{1}{2}} 512 = -9$ 7) $\log_{e} x = 7.17$ 8) $\log_{625} 25 = y$

7)
$$\log_e x = 7.17$$

$$8)\log_{625} 25 = y$$

Evaluate each expression.

10)
$$\log_{\frac{1}{2}} \frac{1}{32}$$

11)
$$\log_8 \frac{1}{512}$$

13) Complete the table below for the values of y for the equation $y = \log_3 x$

х	$\frac{1}{9}$	$\frac{1}{3}$	1	3	9	27
у						

14) Which is larger, $\log_6 35$ or $\log_5 26$? Explain your reasoning.

15) Elisa and Matthew are evaluating $\log_{\frac{1}{7}} 49$. Is either of them correct? Explain your reasoning WITHOUT USING A CALCULATOR.

Elisa

$$\log_{\frac{1}{7}} 49 = y$$

$$\left(\frac{1}{7}\right)^y = 49$$

$$(7^{-1})^y = 7^2$$

$$7^{-y} = 7^2$$

$$y = 2$$

Matthew

$$\log_{\frac{1}{7}} 49 = y$$

$$49^{y} = \frac{1}{7}$$

$$(7^2)^y = 7^{-1}$$

$$2y = -1$$

$$y = -\frac{1}{2}$$

16) Find the inverse of $y = 6^x$.

Graph the inverse of $y = 6^x$ on the graph below and complete:

Domain:

Range:

Asymptote:

X-Intercept: