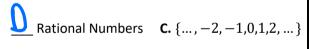

Notes: Classifying Numbers

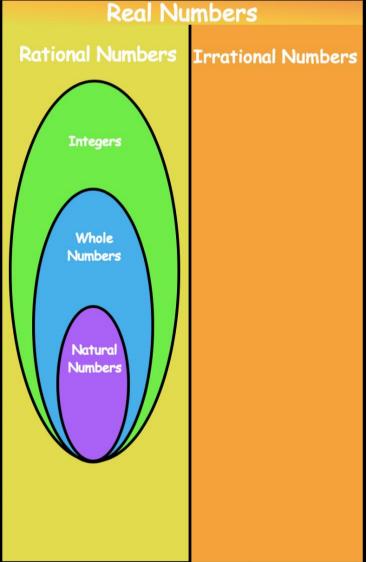
Do Now: Match each description with the set of numbers that most appropriately be represents it. No repeating.

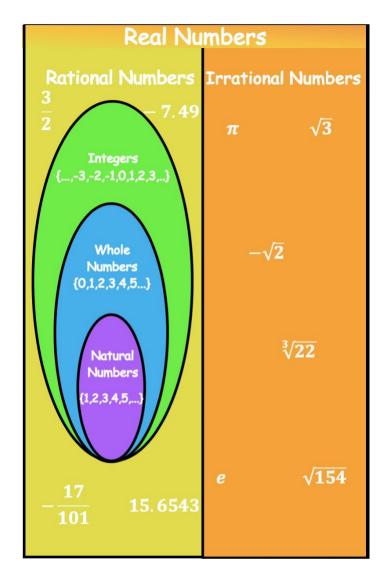
C Golf Score

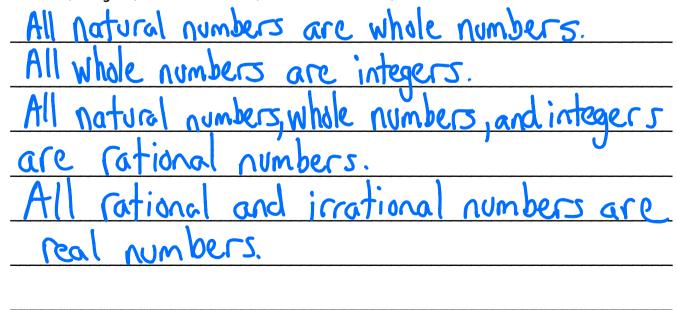


A.
$$\left\{\frac{1}{6}, \frac{2}{5}, \frac{5}{9}, \frac{13}{14} \dots\right\}$$

$$C. \{...-2,-1,0,+1,+2...\}$$


Using the diagram to the right, match each of the number sets with its name.




$$5$$
 Whole Numbers **E.** $\{..., -\sqrt{5}, \sqrt{2}, \pi, ...\}$

Describe what the diagram above tells us about the relationship between natural numbers, whole numbers, integers, rational numbers, irrational numbers, and real numbers.

What Should I Be Able to Do?

- I can define natural numbers and list the number set.
- I can define whole numbers and list the number set.
- I can define integers and list the number set.
- I can define rational numbers and explain why a given number is rational.
- I can define irrational numbers and explain why a given number is irrational.
- I can define real numbers and explain why a given number is real.
- I can create the "Numbers Web" and explain how each number set is related.

Natural Numbers (denoted, \mathbb{N}): { 1, 2, 3, 4, ...}

- Numbers we use for counting.
- Set of all the positive integers.

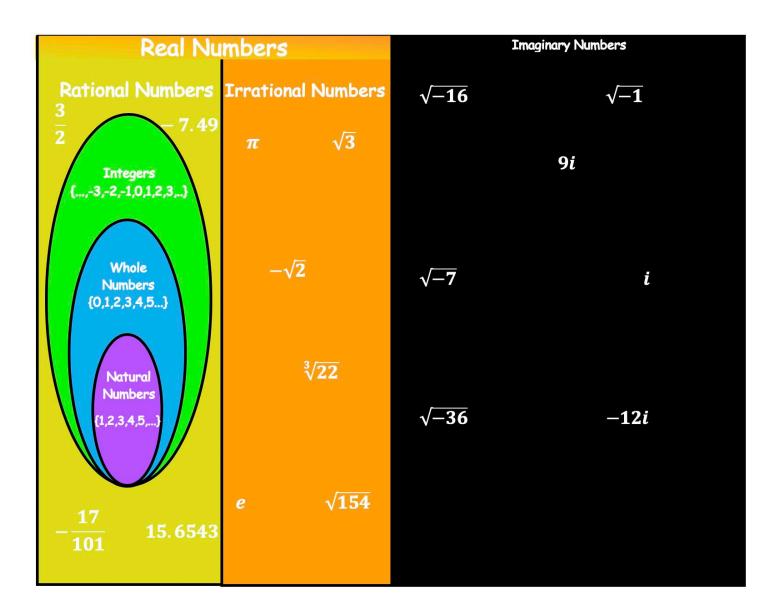
Whole Numbers (denoted \mathbb{W}): $\{0, 1, 2, 3, 4, ...\}$

- Nonnegative numbers that can be written without a fraction or decimal.
- Set of all the nonnegative integers.

Integers (denoted \mathbb{Z}): $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$

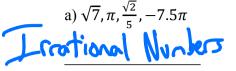
- A number that can be written without a fractional part.

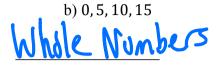
Rational Numbers (denoted \mathbb{Q}): $\{... - 10, -\frac{5}{6}, 0, \frac{1}{3}, 0.6, \sqrt{25}, 19.\overline{51} ...\}$

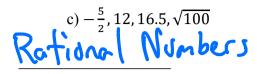

- All numbers that can be written as a fraction, $\frac{a}{b}$, where a and b are integers and $b \neq 0$.
- All numbers are either terminating or repeating.

Irrational Numbers (denoted I): $\{...,0.56093271546...,\sqrt{2},\pi,1.21211211121111,...\}$

- Numbers that **CANNOT** be written as a fraction, $\frac{a}{b}$, when a and b are integers and $b \neq 0$.
- All numbers that are non-terminating and non-repeating.


Real Numbers (denoted \mathbb{R}): ..., -17.5102, $-\frac{18}{4}$, 0, $\sqrt{15}$, π , 10, ...


All the rational and irrational numbers.



1) Match each set of numbers with their most appropriate classification.

Classifications:
Whole Numbers
Integers
Rational Numbers
Irrational Numbers
Real Numbers
Imaginary Numbers



d) $\sqrt{-16}$, $\sqrt{-20}$, 72*i*

e) -9, -1, 6, 29, 1076

f) -15.5, $-\frac{9}{5}$, 0.001, $\frac{\pi}{2}$, π , 97

Integers

- 2) What type of number is -7?
- a) whole number
- b) irrational number
- c) integer
- d) imaginary number

- 3) Which does *not* describe 107?
- a) whole number
- b) integer
- c) real number
- d) irrational number
- 4) Which would be the most appropriate domain for finding you weight in pounds?
- integers
- rational numbers
- c) positive integers
- d) positive rational numbers
- 5) Nancy was asked the question, "Is the number $\frac{\pi}{2}$ a rational or irrational number?" She answered, "The number $\frac{\pi}{2}$ is a rational number because it can be represented as a fraction. Is Nancy correct? Explain your reasoning.

not an integer, therefore cannot be written as a fraction $\frac{a}{b}$, where a and b are integers and $b \neq 0$.

- 6) Which statement is not always true?
- a) The sum of two rational numbers is rational.
- $\pi \cdot \pi = \pi^2$
- b) The product of two irrational number is rational.
- c) The sum of a rational number and an irrational number is irrational.
- d) The product of a nonzero rational number and an irrational number is irrational.

Success Criteria
Set of all positive integers. [1 can define natural numbers and list the number set.
-I can define whole numbers and list the number set. Set of all non negative integers. $\{0,1,2,3,-1\}$
I can define integers and list the number set. Set of numbers that can be written without a fractional part. \{\int_{\cdots}-2,-1,0,1,2,\ldots\}\} I can define rational numbers and explain why a given number is rational.
Define the set of rational numbers. Then, explain why $\frac{5}{7}$ is a rational number. Set of numbers that can be written as a fraction, is where a and b are integers and $b \neq 0$. To is a rational number because 5 and 7 are integers.
where a and b are integers and b ≠0. 5% is a
rational number because 5 and 7 are integers.
- I can define irrational numbers and explain why a given number is irrational.
Define the set of interval numbers. Then, explain why $\sqrt{2}$ is an irrational number. Set of numbers that are non-terminating and
non-repeating. 12 is a non-terminating and
non-repeating number, therefore irrational.
- I can define real numbers and explain why a given number is real.
Define the set of real numbers. Then explain why $\sqrt{19}$ is a real number. Set of all rational and irrational numbers.
V19 is an irrational number and therefore
is a real number

- I can create the "Numbers Web" and explain how each number set is related.						
REAL NU	MBERS					
Rational Tatogers	Irrational	TEGG				
William)	Numbers					
Numbers		y 5				
Matural numbers are Whale numbers are a	a subset of subset of interest	Whole number				
Motural numbers are a subset of whole numbers. Whole numbers are a subset of integers. Integers are a subset of rational numbers. All rational and irrational numbers are real numbers.						
All rational and irrational	al numbers are	real numbers				
Imaginary numbers are their own separate number group.						
number gro	up,	•				
J						

Classwork/Homework: Classifying Numbers

- 1 What type of number is $\sqrt{17}$?
- (1) rational number (2) rrational number

(1) - 18

- (3) imaginary number
- (4) whole number
- **2** What type of number is 16.2?

4 If x is whole number, then -7x must be a

- (1) rational number (2) irrational number
- (3) integer
- (4) whole number

- 3 All of the following numbers are integers except
- (2) 0(4) 1,500

- (1) whole number
- (3) irrational number

-7(5) = -35

- integer
- (4) imaginary number

5 Write a fraction that is *not* a rational number

This fraction is not a rational number

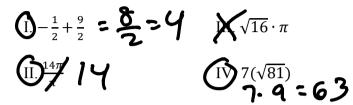
This fraction is not a rational number

because \frac{12}{5} is in the form of \frac{12}{5} and a ≠ an integer.

- 6 The cost of production of shoes in a factory is most appropriately represented by
- (1) nonnegative rational numbers integers integers
- (3) nonnegative real numbers (4) Irrational numbers
- 7 Describe a scenario when it would be most appropriate to use rational numbers.

Measuring the amount of water

8	You are counting the	e number of dogs	at a local do	g park. W	hat set of nu	ımbers woul	d be most
ar	ppropriate to use?						


 $(1) \{... - 2, -1, 0, 1, 2, ...\}$

 $(3) \{0, \frac{1}{2}, 1, 1, \frac{1}{2}, 2, 2, \frac{1}{2}, 3, \dots\}$

(2) (0,1,2,3,4,5, ... }

 $(4) \{-1,0,1,2,3,4\}$

9 Given the following expressions:

Which expression(s) result in an integer?

- (1) I,II,IIV (2) I,IV, only
- (3) I,III,IV
- (4) II, only
- **10** Which statement is *not* always true?
- (1) The product of an integer and a whole number is an integer.
- (2) The product of an integer and a whole number is a whole number.

 (3) The sum of two retired.
- (3) The sum of two rational numbers is rational.
- (4) The difference of two real numbers is real.

11 Could you ever add a rational number and an irrational number to obtain a rational number? If yes, provide an example. If no, explain your reasoning.

No because adding a rational number to an irrational number could not result in a number that terminates or repeats.

12 Determine if the sum of $5\sqrt{7}$ and $2\sqrt{7}$ is rational or irrational. Explain your answer.

Which polynomial has a leading coefficient of 4 and a degree of 3?

$$(1) 3x^4 - 2x^2 + 4x - 7$$

$$(2) 4 + x - 4x^2 + 5x^3$$

$$(3) \ 4x^4 - 3x^3 + 2x^2$$

$$(4)$$
 $2x + x^2 + 4x^3$

$$(3) 4x^{4} - 3x^{3} + 2x^{2}$$

$$(4) 2x + x^{2} + 4x^{3}$$

$$4x^{3} + x^{2} + 7x$$

14

John was given the equation 4(2a + 3) = -3(a - 1) + 31 - 11a to solve. Some of the steps and their reasons have already been completed. State a property of numbers for each missing reason.

$$4(2a + 3) = -3(a - 1) + 31 - 11a$$

$$8a + 12 = -3a + 3 + 31 - 11a$$

$$8a + 12 = 34 - 14a$$

$$22a + 12 = 34$$

Given

Combining like terms

Additive Property of Equality

15 Could you ever multiply an irrational number by an irrational number to obtain a rational number? If yes, provide an example. If no, explain your reasoning.

16 Given the following expressions:

$$X - \frac{1}{2} + \frac{9}{2} = \frac{8}{2} = 9$$

$$1$$
 $4\pi - 1$

$$\frac{17}{4} - \frac{\sqrt{13}}{4}$$

$$(10)(\sqrt{10})(\sqrt{10}) = 10$$

Which expression(s) result in an irrational number?

(1) II, only

(3) I, II, III, IV

- (2) IV, only
- 4) II, III
- 17 Which statement is *not* always true? (Select all that apply)
- 压(量)=量=
- (1) The product two irrational numbers is irrational. (2) The product of two rational numbers is rational.
- (3) The sum of two irrational numbers is irrational.
- T+(~T) ~ (4) The difference of a rational number and an irrational number is irrational.

Classifications: Whole Numbers **Rational Numbers** Integers **Irrational Numbers** Real Numbers **Imaginary Numbers** b) {0,1,2,3,4,...} a) $\{\dots, -2, -1, 0, 1, 2, \dots\}$

d) $\sqrt{2}$, π , $\sqrt{701}$

e) -8, -1.05, $\frac{1}{2}$

19 What type of number is $\sqrt{36}$?

20 What type of number is 67.8?

- rational number 2) irrational number
- (3) imaginary number
- (4) negative integer
- (1) ositive rational number.
- (3) integer

- (2) positive irrational number (4) positive integer

21 If $y ext{ is a negative integer, then } -10 ext{ must be a}$

-10(-5)=50

1) whole number

- (3) irrational number
- 2) negative rational number
- (4) imaginary number

22 Describe a scenario when it would be most appropriate to use whole numbers.

When counting workers at a restaurant.

23 Which statement is always true?

The sum of an integer and a rational number is an integer (2) The sum of an integer and a whole number is an integer. —] + 5 = 4

The product of real number and a whole number is a whole number. The product of two irrational numbers is an integer.

24	The number of	f cashiers at a loca	l supermarket is mos	t annronriately rei	presented by
47	The number of	i casilicis ai a loca	i supermarket is mos	i appropriatory rej	presented by

- (1) integers
- (2) real numbers

- (3) rational numbers
- (4) whole numbers

25 The area of a circle is most appropriately represented by

- (1) nonnegative rational numbers
- (2) integers

- (3) nonnegative real numbers
- (4) irrational numbers

26 For which value of M and N is M + N a rational number?

(1)
$$M = \frac{1}{\sqrt{9}}$$
 and $N = \frac{1}{\sqrt{2}}$
(2) $M = \frac{1}{\sqrt{3}}$ and $N = \frac{1}{\sqrt{2}}$
(3) $M = \frac{1}{\sqrt{25}}$ and $N = \frac{1}{\sqrt{6}}$
(4) $M = \frac{1}{\sqrt{9}}$ and $N = \frac{1}{\sqrt{6}}$

(2)
$$M = \frac{1}{\sqrt{3}}$$
 and $N = \frac{1}{\sqrt{2}}$
(3) $M = \frac{1}{\sqrt{25}}$ and $N = \frac{1}{\sqrt{64}}$
(4) $M = \frac{1}{\sqrt{64}}$ and $N = \frac{1}{\sqrt{64}}$

27 Jamal is given the following values:

$$A = 4.5$$

$$B = \sqrt{4}$$

$$C = -17$$

$$D = \frac{19}{2}$$

He states that BC + AD is an integer. Is Jamal correct? Explain your reasoning

Janal is incorrect because 8.75 has a necessary fractional

28 Is the sum of $2\sqrt{2}$ and $9\sqrt{32}$ rational or irrational? Explain your reasoning.

252+9132 = 15.5563491861....

The sum of 252 and 9532 is irrational be cause it is a non-terminating and non-repeating number.

29 Is the product of $2\sqrt{2}$ and $9\sqrt{32}$ rational or irrational? Explain your reasoning.

Rational number because 144 terminates.

30 For which value of *P* and *Q* is *PQ* an irrational number?

(1)
$$P = \frac{1}{\sqrt{2}}$$
 and $Q = \frac{1}{\sqrt{50}}$
(2) $P = \frac{1}{\sqrt{4}}$ and $Q = \frac{1}{\sqrt{5}}$
(3) $P = \frac{1}{\sqrt{4}}$ and $Q = \frac{1}{\sqrt{9}}$
(4) $P = \frac{1}{\sqrt{25}}$ and $Q = \frac{1}{\sqrt{81}}$

31 Given:

$$W = 3\sqrt{4}$$

$$X = \sqrt{7}$$

$$Y = \sqrt{6}$$

$$Z = -2\sqrt{9}$$

Which results in a rational number?

Which results in a rational number?

(1)
$$XY = \sqrt{3} \cdot \sqrt{6} = \sqrt{42}$$

(2) $X + Y = \sqrt{4} \cdot \sqrt{2}$

(3) $W + Z = \sqrt{6} \cdot 6 = -36$

33 State whether $9 - \sqrt{3}$ is rational or irrational. Explain your answer.

A formula for determining the finite sum, S, of an arithmetic sequence of numbers is $S = \frac{n}{2} (a + b)$, where n is the number of terms, a is the first term, and b is the last term.

Express b in terms of a, S, and n. $\frac{2}{3}(5) = a + b$ $\frac{25}{3} = a + b$ $\frac{25}{3} = a + b$ $\frac{25}{3} = a + b$

35 Could you ever subtract an irrational number by an irrational number to obtain a rational number? If yes, provide an example. If no, explain your reasoning.

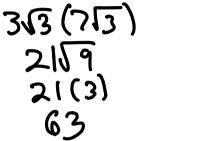
 $\frac{18}{36}$ The product of $\sqrt{324}$ and $\sqrt{466}$ is

- (1) irrational because both factors are irrational
- (2) irrational because one factor is irrational
- rational because both factors are rational
- (4) rational because one factor is rational

37 The solution to the equation $2x - \sqrt{5} = 10$ is a

- (1) whole number
- (3) rrational number
- (2) rational number
- (4) imaginary number

$$R = \sqrt{36}$$


$$S = \sqrt{4}$$

$$T = \sqrt{12}$$

$$U = \sqrt{3}$$

Which results in an irrational number?

- 39 The sum of $\sqrt{200}$ and $\sqrt{676}$ is
- (1) irrational because both addends are irrational
- (2) irrational because one addend is irrational
- (3) rational because both addends are rational (4) rational because one addend is rational
- **40** Is the product of $3\sqrt{3}$ and $7\sqrt{3}$ rational or irrational? Explain your reasoning.

Rational because 63 is a terminating number.

41 Ms. Robbins asked her class, "Is the sum of 5.27 and $\sqrt{5}$ rational or irrational?" Giovani answered that the sum was irrational.

State whether Giovani is correct or incorrect. Justify your reasoning.

Grovani is correct because 5.27 + 15 is a non-terminating and non-repeating

- 42 Chris said that "All rational numbers are real numbers." Do you agree with Chris? Explain your les because rational numbers are a subset of real numbers. reasoning.
- 43 Derrick said that "All real numbers are rational numbers." Do you agree with Derrick? Explain your reasoning.

No because irrational numbers are real numbers that are not rational.

- **44** Which statement is *not* always true?
- (1) The product of an integer and a whole number is an integer.
- (2) The sum of an integer and a whole number is an integer.
 (3) The product of two irrational numbers is irrational.
- (4) The sum of a rational number and an irrational number is irrational.

45 The amount of a bill at a local restaurant is most appropriately represented by

(1) positive rational numbers positive irrational numbers

(3) whole numbers (4) integers

46 You are counting the value of a certain number of quarters. What set of numbers would be most appropriate to use?

$$(1) \{... - 2, -1, 0, 1, 2, ...\}$$

$$(3)\{0,\frac{1}{4},\frac{1}{2},\frac{3}{4},1,1\frac{1}{4},1\frac{1}{2},...\}$$

$$(4)\{-1.0.1,2.3.4\}$$

47 Is the product of $\sqrt{36}$ and $\frac{6}{7}$ rational or irrational? Explain your reasoning.

$$6(\frac{6}{5}) = \frac{5}{36}$$

36 is a rotional number because it 7 is written in the form & where a and b are integers and b #0.