\qquad
\qquad
Notes: Domain and Range 2.0
Do Now:

1) Find the values) of x that will make the following function undefined.

$$
f(x)=\frac{2}{x+5}
$$

$$
\begin{aligned}
& x+5=0 \\
& x=-5
\end{aligned}
$$

2) Find all the real values of x that will make the following function imaginary.

$$
\begin{aligned}
& f(x)=\sqrt{2 x-20} \\
& 2 x-20<0 \\
& +20+20 \\
& \frac{2 x}{2} \frac{20}{2} \\
& x<10
\end{aligned}
$$

What Should I Be Able to Do?

- I can algebraically find the domain and range of linear and square root equations.
- I can algebraically find the domain of rational equations.

Let's take a look at the graphs of the functions in our Do Now:

1) $f(x)=\frac{2}{x+5}$

How does the graph of $f(x)=\frac{2}{x+5}$ show us the domain of the function?
\qquad graph when $x=-5$.

How does the (x, y) table of $f(x)=\frac{2}{x+5}$ support our findings?
When $x=5$, the x, y table
has an ERROR message.
What is the range of $f(x)=\frac{2}{x+5}$?

$$
(-\infty, 0) \cup(0, \infty)
$$

All real numbers such that $y \neq 0$.
2) $f(x)=\sqrt{2 x-20}$

How does the graph of $f(x)=\sqrt{2 x-20}$ show us the domain of the function?
\qquad
\qquad
How does the (x, y) table of $f(x)=\sqrt{2 x-20}$ support our findings?
For all $x<10$, the y values have an $E R R O R$ message.
What is the range of $f(x)=\sqrt{2 x-20}$?

$$
[0, \infty)
$$

Determine the domain of the function $f(x)=\frac{3 x}{x+1}$.

$$
\begin{aligned}
& x+1 \neq 0 \\
& -1=1 \\
& x \neq-1 \\
& (-\infty,-1) \cup(-1, \infty)
\end{aligned}
$$

All real numbers such that $x \neq-1$. Determine the domain and range of the function $f(x)=2 x+1$.

Domain: All real numbers
Range: All real numbers.

Determine the domain and range of the function $f(x)=\sqrt{x-3}$.
$x-3 \geq 0$
$+3+3$
$x \geq 3$

Domain: All real numbers such that $x \geq 3$.

Range: All real numbers such that $Y \geq 0$.

Determine the domain of the function $f(x)=\frac{1}{\sqrt{x-3}}$.
$\sqrt{x-3} \neq 0$ but also stipulations to

$$
x-3 \geq 0
$$

combine both get

$$
\begin{aligned}
& x-3>0 \quad x>3 \\
& +3+3
\end{aligned}
$$

Domain: All real numbers such that $x>3$.

Determine the domain of the function $f(x)=$

$$
\begin{gathered}
x-2 \geq 0 \\
+2+2 \\
x \geq 2
\end{gathered}
$$

$$
\begin{array}{r}
x-7 \neq 0 \\
+7+7 \\
x \neq 7
\end{array}
$$

Must satisfy both stipulations

$$
[2,7) \cup(7, \infty)
$$

Determine the domain of the function $f(x)=$

$$
\begin{gathered}
x+5 \geqslant 0 \\
-5
\end{gathered} \begin{gathered}
-5 \\
x \geqslant
\end{gathered}
$$

$$
\begin{aligned}
& x-4>0 \\
&+y+4 \\
& x>4
\end{aligned}
$$

\uparrow
Must satisfy both stipulations

$$
(4, \infty)
$$

Checkpoint:
Find the domain and range of each function.

1) $f(x)=\sqrt{x+13.5}$

$$
\begin{aligned}
& x+13.5 \geq 0 \\
& x \geq-13.5
\end{aligned}
$$

$$
D: x \geqslant-13.5
$$

$$
R: y \geq 0
$$

Find the domain of each function.
3) $f(x)=\frac{x-7}{x+14}$

$$
\begin{aligned}
& x+14 \neq 0 \\
& -14-14 \\
& x \neq-14
\end{aligned}
$$

All real numbers such that $x \neq 14$ $(-\infty, 14) \cup(14, \infty)$
5) $f(x)=\frac{\sqrt{x}}{x-6}$

2) $2 y-14 x=-\frac{8}{7}+19 x$

$$
+14 x \quad 7+14 x
$$

$$
\frac{2 y}{2}=\frac{-\frac{8}{7}+23 x}{2}
$$

$$
y=\frac{23}{2} x-\frac{8}{14}
$$

$D:$ All real numbers
R :All real numbers

$$
\begin{aligned}
& \text { 4) } f(x)=\frac{3 x-4}{\sqrt{4 x-23}} \\
& 4 x-23>0 \\
& 4 x>23 \\
& x>5.75
\end{aligned}
$$

All real numbers such that

$$
x>5.75
$$

$$
\text { or }(5.75, \infty)
$$

6) $f(x)=\frac{\sqrt{x-2}}{\sqrt{x+1}}$

$$
x-2 \geq 0
$$

$x \geqslant 2 \longleftarrow$ Put these
$x+1>0$
$x>-1$ together!.
$x \geq 2$

Success Criteria

- I can algebraically find the domain and range of linear and square root equations. Find the domain and range of each function.

- I can algebraically find the domain of rational equations.

Find the domain of each function.

1) $f(x)=\frac{3 x}{5 x-6}$
2) $f(x)=\frac{x-1}{\sqrt{6 x+15}}$

$$
\begin{gathered}
6 x+15>0 \\
6 x>-15 \\
x>\frac{-15}{6}
\end{gathered}
$$

\qquad
\qquad
Classwork: Domain and Range 2.0
Find the domain and range of each function.

1) $f(x)=2 \sqrt{\frac{3}{2} x+5}$
$\frac{3}{2} x+5 \geq 0$
$\frac{3}{2} x \geq-5$
$x \geq \frac{-10}{3}$
$D: x \geq \frac{-10}{3}$
$R: Y \geqslant 0$
Find the domain of each function.
2) $f(x)=\frac{x-7}{x}$
$x \neq 0$

$$
D:(-\infty, 0) \cup(0, \infty)
$$

$$
\text { 4) } \begin{aligned}
f(x) & =\frac{2 x+\frac{1}{2}}{\sqrt{x-15}} \\
x-15 & >0 \\
x & >15
\end{aligned}
$$

$D: x>15$
5) $f(x)=\frac{\sqrt{x}}{\sqrt{x-7}}$
6) $f(x)=\frac{\sqrt{x+8}}{2 x-\frac{3}{4}}$

$$
\begin{gathered}
x \geq 0 \quad \begin{array}{c}
x-7>0 \\
x>7
\end{array} x>7
\end{gathered}
$$

2) $x=\frac{1}{3} y+5$

$$
D: \mathbb{R}
$$

$$
R: \mathbb{R}
$$

7) Sketch the graph of $f(x)$ using the following information.

- $f(x)$ is decreasing on interval $(-\infty, 5)$
- $f(5)=1$
- $f(x)$ is increasing on interval $(5, \infty)$

Completely simplify each expression.

$$
\begin{gathered}
\left.\begin{array}{c}
8)\left(\frac{74 x^{-15} y^{5} z^{-1 / 6}}{4 y-8 z^{8 / 6}}\right.
\end{array}\right)^{-2} \\
\left(\frac{4 y^{-8} z^{8 / 6}}{74 x^{-15} y^{5} z^{-1 / 6}}\right)^{-8} \\
\left(\frac{4}{74} \frac{1}{x^{-15}} \frac{y^{-8}}{y^{5}} \frac{z^{8 / 6}}{z^{-1 / 6}}\right)^{2} \\
\left(\frac{2}{37} x^{15} y^{-13} z^{3 / 2}\right)^{2} \\
\frac{4}{1369} x^{30} y^{-26} z^{3} \\
\frac{4 x^{30} z^{3}}{1369 y^{26}}
\end{gathered}
$$

10) $\frac{\left(\frac{1}{64}\right)^{-2 / 3}-(2)^{3 / 2}}{(16)^{3 / 4}-(2)^{5 / 2}}$

$$
\begin{aligned}
& (64)^{2 / 3}=\sqrt[3]{64}=16 \\
& {\sqrt{2^{3}}}^{2}=\sqrt{8}=2 \sqrt{2} \\
& \sqrt[4]{16}^{3}=2^{3}=8 \\
& \sqrt{2^{5}}=\sqrt{32}=4 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[99]{\sqrt[3]{-\frac{1}{33^{200} y^{3 z^{70}}}}} \begin{array}{l}
\sqrt[3]{3+\frac{3}{343}} \sqrt[3]{x^{20}} \sqrt[3]{y^{33}} \sqrt[3]{z^{20}} \\
\frac{-1}{7} \sqrt[3]{x^{18}} \sqrt[3]{x^{2}} y^{11} \sqrt[3]{z^{69} \sqrt[3]{z}} \\
\frac{-1}{7} x^{6} \sqrt[3]{x^{2}} y^{11} z^{23} \sqrt[3]{z} \\
\frac{-1}{7} x^{6} y^{11} z^{23} \sqrt[3]{x^{2} z}
\end{array}{ }^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{16-2 \sqrt{2}}{8-4 \sqrt{2}}=\frac{x(8-\sqrt{2})}{2(4-2 \sqrt{2})}=\frac{8-\sqrt{2}(4+2 \sqrt{2})}{4-2 \sqrt{2}(4+2 \sqrt{2})} \\
& \frac{32+6 \sqrt{2}-4 \sqrt{2}-2(2)}{16+8 \sqrt{2}-8 \sqrt{2}-4(2)}=\frac{28+12 \sqrt{2}}{8}=\frac{7+3 \sqrt{2}}{2}
\end{aligned}
$$

Solve each of the following equations.

$$
\begin{gathered}
\begin{array}{c}
\frac{11)}{\frac{-3 x^{2}}{-3}=-\frac{24}{-3}} \\
\left(x^{3 / 2}\right)^{2 / 3}=(8)^{2 / 3} \\
x=(\sqrt[3]{8})^{2} \\
x=(2)^{2} \\
x=4
\end{array}
\end{gathered}
$$

Check:
13) Solve the following system of equations.

$$
\begin{gathered}
12 x+28 y+4 z=-24 \\
+-5 x-6 y-4 z=33 \\
7 x+22 y=9 \\
3(7 x+22 y=9 \\
-23 x-66 y=-17 \\
21 x+66 y=27 \\
+\frac{-23 x-66 y}{}=-17 \\
\hline-2 x=10 \\
x=-5
\end{gathered}
$$

$$
\begin{array}{c|l}
7(-5)+22 y=9 & x=-5 \\
-35+22 y=9 & y=2 \\
22 y=44 & z=-5 \\
y=2
\end{array}
$$

$$
\begin{aligned}
& \text { 12) }-\frac{4}{5}(x+9)^{\frac{5}{2}}+1=-79,999 \\
& \left((x+9)^{5 / 3}\right)^{3 / 1}=(100000)^{3 / 5} \\
& x+9=\sqrt[5]{10,000}^{3} \text { Check: } \\
& x+9=(10)^{3}-\frac{4}{5}(991+9)^{5 / 3}+1= \\
& x+9=1000 \\
& \text {-79999 }
\end{aligned}
$$

14)

Graph the following system of inequalities on the set of axes below:

$$
\begin{array}{lr}
\text { ities on the set of axes below: } \\
\begin{array}{lr}
\frac{2 y \geq 3}{2} \geq 3 x-16 & y \geq \frac{3}{2} x-8 \\
y^{2}+2 x x^{2}-5 & y>-2 x-5 \\
-2 x-2 x & y>
\end{array}
\end{array}
$$

Based upon your graph, explain why $(6,1)$ is a solution to this system and why $(-6,7)$ is not a solution to this system.
$(6,1)$ is a solution because it is in the doubleshaded region on a solid line.
$(-6,7)$ is not a solution because it is on a dotted line.
15)

Given that $f(x)=2 x+1$, find $g(x)$ if $g(x)=2[f(x)]^{2}-1$.

$$
\begin{aligned}
& 2(2 x+1)^{2}-1 \\
& 2(2 x+1)(2 x+1)-1 \\
& 2\left(4 x^{2}+2 x+2 x+1\right)-1 \\
& 2\left(4 x^{2}+4 x+1\right)-1 \\
& 8 x^{2}+8 x+2-1 \\
& 8 x^{2}+8 x+1
\end{aligned}
$$

16) Completely simplify the following expression.

$$
\begin{aligned}
& -5 i^{102}+6.25 i^{4^{11}}+\frac{17}{3} i^{28}-i^{1,123} \\
& -5(-1)+6.25(i)+\frac{17}{3}(1)-(-i) \\
& 5+6.25 i+\frac{17}{3}+i \\
& \frac{33}{3}+7.25 i
\end{aligned}
$$

17) Solve for f in the equation below.

$$
\frac{f(a+b)}{a+b}=\frac{c(d+e)^{\frac{a+b}{c}=\frac{d+e}{f}}}{a+b} \quad \sqrt{f=\frac{c(d+e)}{a+b}}
$$

