\qquad
Notes: Solving Equations with Rational Exponents
Do Now: ALGEBRAICALLY solve each of the following equations.
2) $\left[(2 x+3)^{1 / 2}\right]^{2}=(8)^{2}$

$$
\text { 1) } \begin{array}{rc}
\sqrt{2 x+3}=8 & \text { Cheek } \\
2 x+3=64 & \sqrt{2(30.5) r} \\
-3-3 & \sqrt{64}=8 \\
\frac{2 x=61}{2} & \sqrt{8}=8 \\
x=30.5 &
\end{array}
$$

$$
2 x+3=64
$$

Check:

$$
-3-3
$$

$$
\frac{2 x}{2}=\frac{61}{2}
$$

$(2(30.5)+3)^{1 / 2}=8$

$$
x=30.5
$$

$$
\sqrt{8}=8
$$

$$
\begin{gathered}
3(2 x+3)^{1 / 3}=\frac{3}{8}(8) \\
2 x+3=512 \\
-3-3 \\
\frac{2 x}{}=\frac{509}{2} \\
x=254.5
\end{gathered}
$$

$$
4\left[(2 x+3)^{3 / 2}\right]^{2 / 3}=(8)^{2 / 3}
$$

What Should I Be Able to Do?

- I can solve equations with rational exponents.

$$
\begin{aligned}
& \text { 1) } 3 x^{5 / 4}-1=95 \\
& +1 \\
& \frac{3 x^{5 / 4}}{3}=\frac{96}{3} \\
& \left(x^{5 / 4 / 4 /(32)^{4 / 5}}\right. \\
& x=16
\end{aligned}
$$

Check:

Cheek
Check:
$(25.5 .5)+3)^{1 / 3}=8$

$$
\begin{array}{r}
2 x+3=4 \\
-3=-3
\end{array}
$$

$$
\begin{aligned}
& \frac{2 x}{2}=\frac{1}{2} \\
& x=0.5
\end{aligned}
$$

$$
\begin{array}{r}
(20.5)+3)^{3 / 2}=8 \\
8=8
\end{array}
$$

$$
3(16)^{5 / 4}-1=95
$$

$$
J 95=95
$$

$$
\begin{aligned}
& \text { 2) } \begin{array}{l}
\left.\left.\left.\frac{-2(x+10)^{\frac{9}{5}}}{-2} \frac{12}{-2} \quad \begin{array}{c}
\text { Check: } \\
(x+10)^{9 / 5}
\end{array}\right]=(-6)^{5 / 9}-10\right)^{9 / 10}\right]^{5 / 9}=12 \\
\\
\begin{array}{l}
\left(x+10=(-6)^{5 / 9}\right. \\
-10 \quad-10=12
\end{array} \\
x=(-6)^{5 / 9}-10
\end{array}
\end{aligned}
$$

Checkpoint:
Solve each of the following equations.

$$
\begin{array}{ll}
\text { 1) } x^{1 / 7}+3=2 \\
\left(x^{1 / 7}\right)^{3}=-3 & \text { Check: } \\
x=-1 & \sqrt{(-1)^{1 / 7}+3=2} \\
x & 2=2
\end{array}
$$

Check

$$
\begin{array}{r}
(14+2)^{3 / 2}=-64 \\
64 \neq-64
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { 3) }\left(\frac{1}{5 x+7}\right)^{-3 / 7}=15 \\
{\left[(5 x+7)^{3 / 7 / 3 / 2}=(15)^{7 / 3}\right.}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \rightarrow \frac{5}{15^{7 / 3}-7}+1+1 \\
& \frac{5 x}{5}=\frac{15^{2 / 3}-7}{5} \quad x=\frac{15^{7 / 3}-7}{5} \quad x=(21)^{2 / 5}+1
\end{aligned}
$$

Check:

$$
\begin{gathered}
\frac{\left.\left(|2|^{2 s+}+\mid\right)-1\right)^{5 / 2}}{3}=7 \\
7=7
\end{gathered}
$$

5) Solve for a in the following equation:

$$
\begin{aligned}
& {\left[\begin{array}{l}
(a+b)^{c / a}+f=g \\
(a+b)^{-f} \int^{-f}-f \\
=(g-f)^{d / c} \\
a+b=(g-f)^{d / c} \\
-b
\end{array}\right]-b} \\
& a=(g-f)^{d / c}-b
\end{aligned}
$$

Success Criteria

- I can solve equations with rational and negative exponents. 1) Solve each of the following equation.

$$
\begin{array}{lc}
{\left[(x-5) 5 / 5=(27)^{5 / 3}\right.} \\
x-5=243 \\
+5+5
\end{array} \quad \begin{array}{cc}
\text { Check: } \\
x=248 & (248-5)^{3 / 5}=27 \\
x=27 \sqrt{ } & 27=27
\end{array}
$$

Explain what your first step accomplishes and how it helps solve the equation.
When I raise both sides of the equation to the $\frac{5}{3}$ power to get $x-5$ alone on the left side of the equation.

Solve each of the following equations.
(*) $\left.4^{\frac{1}{2}}(2 x-2)^{5 / 2}=6\right)^{2075(4)}$

$$
\begin{aligned}
& {\left[(2 x-2)^{5 / 2}=(243)^{2 / 5}\right.} \\
& 2 x-2=9 \text { Check: } \\
& +2+2 \frac{1}{4}(2(5 \cdot 5)-2)^{2 / 2}=60.15 \\
& \frac{2 x}{2}=\frac{11}{2} \quad \sqrt{60.75}=6.75 \\
& x=5.5
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3) }-2\left(x+111^{\frac{1}{7}}+25=-25 \quad\right. \text { Check: } \\
& \frac{-2(x+1)^{1 / 2 / 7}}{-2}=\frac{-34}{-2} \quad-2\left(17^{\prime \prime \prime}-11+1+1\right)^{n+2} 5=-9 \\
& {\left[(x+11)^{11 / 7}\right]^{7 \prime \prime}=(17)^{7111}} \\
& x+11=(17)^{7 / 11} \\
& \begin{array}{l}
-11-11 \\
x=(17)^{111}-11
\end{array}
\end{aligned}
$$

