Date:_____

Logarithms Practice

Do Now: Solve the following equations.

1)
$$\log(3d) + \log(2d - 2) = \log(3d^2 + 2d - 4)$$

2)
$$\log_3(x^4 + 51x^2 - 27) - \log_3(2x^2 + 1) = 3$$

Solve the following equations.

1)
$$\log(x-2) - \log(x+2) = \log(x-1) - \log(x+7)$$
 2) $\ln(2x^2) + \ln(x^2+10) = \ln(3x^4+27x^2-8)$

2)
$$\ln(2x^2) + \ln(x^2 + 10) = \ln(3x^4 + 27x^2 - 8)$$

3)
$$\log_2(x-9) + \log_2(x+5) = 7$$

4)
$$\log(x^4 + 100x^2 - 156) - \log(x^2 + 1) = 2$$

5) Solve for t in the equation $A = P\left(1 + \frac{r}{n}\right)^{nt}$.	
6) If $a > 1$, sketch the following graphs WITHOUT A CALCULATOR:	
$a) f(x) = \log_a x$	b) $f(x) = \log_{\frac{1}{a}} x$
	5
Domain:	Domain:
Range:	Range:
X-Intercept:	X-Intercept:
Left-end Behavior:	Left-end Behavior:
Right-end Behavior:	Right-end Behavior:

Solve the following equations.

11)
$$\log_2(2x^2 + 3x + 40) - \log_2(2x^2 + x) = 2$$
 12) $\log(h + 5) + \log(h - 2) = \log(-5h + 10)$

Evaluate the following without using a calculator.

15)
$$8 \log_{\frac{1}{2}} 8 - 10^{\log 4} + \ln e^{-2} + 9 \log_{343} 7$$

16)
$$\ln[\log_2(\log\frac{1}{10000})]$$

Find the inverse of the following functions.

17)
$$y = \frac{30.54x + 9.73}{4}$$
.

18)
$$y = 13^{2-x}$$
.

19) Describe how $f(x) = \log x$ changes to form each of the following equations:

$$a) g(x) = -\log(x - 7)$$

b)
$$h(x) = \log(x+2) - 9$$

a)
$$g(x) = -\log(x-7)$$
 b) $h(x) = \log(x+2) - 9$ c) $j(x) = -\log(x-1) + 1$

Rewrite each of the following logarithms using the Change of Base Formula, then round to the nearest thousandth.

22)
$$\log_{\frac{1}{2}} \frac{1}{3}$$

Solve the following equation.

23)
$$\log_2(x) + \log_2(x^2 + 8x - 4) = 5$$