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Abstract	
Using	data	from	the	United	States	Centers	for	Disease	Control	and	the	United	States	Census	
Bureau	we	measure	normalised	mortality	age	profiles	(NMAPs)	of	COVID-19	for	the	25	
worst-affected	States.	There	are	clear	trends	in	NMAPs	with	the	start	date	of	the	epidemic	
for	each	State	and	its	geographical	location,	with	deaths	increasingly	concentrated	in	the	
older	age	groups	for	States	with	later	epidemics.	Deviations	from	this	trend	are	correlated	
with	the	health	index	of	each	State.	These	findings	are	predicted	outcomes	of	the	recently	
proposed	pre-conditioning	field	(PCF)	hypothesis.	A	more	detailed	analysis	is	performed	for	
the	north-eastern	States	to	analyse	the	effect	of	the	initial	epidemic	in	New	York	City	(NYC)	
on	neighbouring	States.	Strong	geographical	trends	in	NMAPs	from	west/south-west	to	east	
of	NYC	are	highlighted.	The	NMAPs	for	the	States	of	New	York	and	Massachusetts	show	a	
remarkably	precise	overlap	if	the	NY	data	is	multiplied	by	a	well-established	immune	system	
ageing	function,	confirming	the	inter-regional	predictions	of	the	PCF	hypothesis.	We	briefly	
discuss	other	possible	underlying	causes	for	the	measured	trends,	and	suggest	more	
sophisticated	data	analyses	to	test	the	PCF	hypothesis.		
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1.	Introduction	and	rationale	
	
The	COVID-19	pandemic	originated	in	Wuhan,	Hubei	province,	China	in	late	2019	(Zhu	et	al.	
2020),	and	has	spread	across	the	globe.	COVID-19	is	the	disease	caused	by	the	SARS-CoV-2	
virus	(Bar-On	et	al.	2020	and	references	therein).	To	date	(early	August	2020)	COVID-19	has	
infected	over	18	million	people	with	a	death	toll	in	excess	of	700,000	(worldometers.info).	
The	United	States	has	been	particularly	badly	hit,	with	over	5	million	people	infected,	and	a	
death	toll	in	excess	of	160,000	(worldometers.info).	With	48	of	the	States	geographically	
contiguous,	and	with	centralised	databases	available	for	both	COVID-19	fatalities	and	
underlying	demographics,	it	is	possible	to	perform	in-depth	data	analysis	of	spatio-temporal	
aspects	of	the	disease	spread	in	the	US,	as	demonstrated	in	recent	studies	(e.g.	Loomba	et	
al.	2020,	Mollalo	et	al.	2020,	Zhang	and	Schwartz	2020).	In	this	report	we	concentrate	on	the	
mortality	age	profiles	due	to	COVID-19	for	the	25	worst-affected	States,	and	study	their	
variation	with	epidemic	start	date	and	geographical	location.		
	
The	rationale	for	studying	the	age	profile	of	mortality	with	respect	to	start	dates	of	epidemic	
status	is	to	test	the	pre-conditioning	field	(PCF)	hypothesis	recently	advanced	by	this	author	
(Newman	2020).	The	PCF	hypothesis	posits	that	infected	populations	immunologically	pre-
condition	neighbouring	and	more	distant	susceptible	populations.	A	candidate	mechanism	
for	the	PCF	is	viral	detritus	(ViDe),	exhaled	by	infected	individuals,	carried	by	air	currents,	
and	subsequently	inhaled	by	susceptible	individuals.	ViDe	is	hypothesised	to	trigger	a	low-
level	immunological	response,	thus	providing	a	degree	of	protection	on	later	exposure	to	
live	SARS-CoV-2	virus.	Mathematical	modelling	has	shown	that	the	PCF	hypothesis	is	able	to	
explain	a	number	of	features	of	the	COVID-19	pandemic,	such	as	highly	disparate	mortality	
rates	from	one	region	to	another,	very	slow	decays	in	epidemic	curves,	and	generally	low	
levels	of	seroprevalence	(as	discussed	in	detail	in	Newman	2020).		
	
Studying	normalised	mortality	age	profiles	(NMAPs)	for	different	States	enables	the	PCF	
hypothesis	to	be	robustly	tested.	If	the	hypothesis	is	correct	then	those	States	experiencing	
the	epidemic	weeks	later	than	others	would	be	expected	to	benefit	from	long-ranged	pre-
conditioning	originating	from	those	earlier	States.	Individuals	will	benefit	if	their	immune	
systems	are	sensitive	and	selective	enough	to	recognise	the	PCF	(e.g.	low	concentrations	of	
SARS-CoV-2	viral	fragments	in	the	ViDe	instantiation).	Given	the	steep	decline	of	immune	
function	with	advanced	age	(Montecino-Rodriguez	et	al.	2013,	Palmer	et	al.	2018)	it	is	
therefore	expected	that	the	most	elderly	sub-populations	will	benefit	least	from	the	PCF,	
and	therefore,	relative	to	their	fellow	citizens	in	younger	age	classes	of	the	same	State,	they	
will	fare	worse	in	terms	of	serious	outcomes,	this	relative	worsening	increasing	in	States	
whose	epidemic	started	later.		
	
Indeed,	we	find	clear	and	statistically	significant	correlations	in	NMAPs	depending	on	the	
start	date	of	the	epidemic	for	each	State.	The	correlations	clearly	show	that	the	elderly	sub-
populations	in	a	given	state	tend	to	be	more	severely	affected,	relative	to	younger	sub-
populations,	the	later	their	State	experienced	the	epidemic.	In	addition,	a	detailed	analysis	
of	the	north-eastern	States	reveals	highly	correlated	NMAPs	relative	to	geography.	The	
NMAP	of	Massachusetts	differs	from	the	NMAP	for	New	York	precisely	by	a	well-known	
function	describing	the	decline	of	the	immune	system.	The	precision	of	this	relationship	is	
remarkable	in	and	of	itself,	and	is	strong	evidence	for	the	PCF	hypothesis.	
	
The	outline	of	the	paper	is	as	follows.	In	section	2	we	define	our	terms	and	the	datasets	we	
work	with,	and	in	section	3	we	report	our	results.	In	section	4	we	summarise	the	findings	
and	discuss	them	in	the	context	of	the	PCF	hypothesis.	We	also	examine	other	possible	
causes	for	the	trends	and	discuss	future	work	to	test	and	exploit	the	PCF	hypothesis.	
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2.	Methods	and	definitions	
	
In	this	technical	section	we	describe	the	methods	and	definitions	used	in	this	study,	with	
brief	descriptions	of	the	rationale	for	each.		
	

2.1	Epidemic	start	date	
We	use	two	different	definitions	for	the	start	date	of	“epidemic	status”	in	a	given	State.	
Definition	1:	the	first	date	at	which	the	State	reports	over	1000	cases	of	COVID-19;	definition	
2:	the	first	date	at	which	the	State	reports	over	50	deaths	from	COVID-19.	These	start	dates	
range	over	a	three-to-four	week	period	as	shown	in	Table	1	(spanning	mid-March	to	mid-
April).	Defining	precise	dates	of	epidemic	outbreaks	is	not	straightforward	(Texier	et	al.	
2016).	However,	given	the	exponential	increase	in	cases	and/or	deaths	at	the	start	of	the	
epidemic	in	a	given	region,	the	start	date	will	be	weakly	(logarithmically)	sensitive	to	the	
precise	number	of	cases	or	deaths	that	define	start	dates.	Population	size	and	density	vary	
considerably	from	one	State	to	another,	and	so	the	values	of	1000	cases	and	50	deaths	have	
been	chosen	as	large	enough	to	be	relatively	insensitive	to	statistical	fluctuations	and	small	
enough	to	be	relatively	insensitive	to	population	size/density	of	the	State	in	question.	
	

2.2	Normalised	mortality	age	profile	(NMAP)	
Comparing	mortality	statistics	between	States	requires	care,	given	the	large	number	of	
variables	that	differ	from	State	to	State,	such	as	population	size,	population	density,	
responses	to	the	pandemic,	and	underlying	demographic	and	genetic	distributions.	Indeed,	
technical	notes	from	the	US	Centers	for	Disease	Control	(CDC)	warn	against	comparing	
mortality	data	from	State	to	State,	in	part	because	of	differing	protocols	and	time	scales	for	
defining	and	officially	registering	COVID-19	deaths.	This	is	sensible	advice	and	rules	out	naïve	
comparisons	of	absolute	numbers	of	deaths	from	one	State	to	another.	That	said,	the	
contiguous	United	States	does	provide	a	rich	dataset	of	the	spread	of	the	epidemic	and	our	
view	is	that	comparisons	of	one	State	to	another	are	possible	if	defined	carefully.	Our	
approach	therefore	is	to	define	a	relative	measure	of	deaths	which	compares	one	sub-
population	in	a	given	State	to	the	remaining	population	in	that	same	State.	This	relative	
measure	will	eliminate	to	a	large	degree	many	of	the	uncontrolled	variables	listed	above.	
We	define	such	a	relative	measure,	which	we	denote	the	“normalised	mortality	age	profile”	
(NMAP).	The	NMAP	is	defined	across	a	set	of	age	classes,	determined	largely	by	the	
structure	of	CDC	and	US	Census	Bureau	datasets,	which	are	decadal.	Given	the	relatively	
small	number	of	deaths	for	those	under	the	age	of	45,	we	do	not	differentiate	age	classes	
below	this	age,	and	therefore	collect	data	for	the	following	six	age	classes:	<45,	45-54,	55-
64,	65-74,	75-84,	≥85.	For	each	age	class	in	a	given	State	we	define	the	mortality	rate	as	the	
cumulative	number	of	deaths	in	that	class	as	of	a	certain	date	divided	by	the	total	number	of	
individuals	in	that	class.	These	mortality	rates	will	define	a	profile	of	deaths	across	age	
classes	for	that	State,	which	for	brevity	we	call	the	mortality	age	profile	(MAP).	It	is	the	
shape	of	the	MAP	that	is	of	interest	to	us,	not	the	absolute	values	of	mortality	rates	which	
will,	of	course,	depend	on	the	intensity	of	the	epidemic	in	that	state,	which	in	turn	will	be	
highly	dependent	on	variables	such	as	population	density	and	local	lockdown	regulations.	
We	therefore	normalise	the	MAP,	such	that	its	integral	(i.e.	the	sum	of	the	values	of	the	
profile)	is	equal	to	unity.	We	call	this	the	normalised	mortality	age	profile	(NMAP).	In	short,	
the	shape	of	the	NMAP	describes	the	relative	burden	of	COVID-19	deaths	across	age	classes	
within	a	given	State	and	can	be	compared	from	one	State	to	another.	A	mathematical	
definition	of	the	NMAP	is	given	in	Appendix	A.1.	In	addition,	we	measure	NMAPs	separately	
for	males	and	females	in	a	given	State,	given	the	significant	disparity	of	mortality	rates	with	
gender.	A	similar	measure	to	the	NMAP,	used	in	epidemiology	and	actuarial	science,	is	the	
standardised	mortality	rate	(Everitt	and	Skrondal	2010,	US	DHHS	2012)	measuring	mortality	
relative	to	standardised	population	tables	or	expected	values.		
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2.3	Datasets	
To	construct	the	NMAPs	we	require	centralised	moderated	datasets	at	the	federal	level,	to	
remove	as	much	State-to-State	administrative	and	reporting	variability	as	possible.	We	
therefore	use	demographic	data	from	the	US	Census	Bureau,	which	was	updated	in	2018;	in	
particular	we	collect	the	number	of	individuals	of	each	gender	and	in	each	of	the	age	classes	
defined	above.	In	this	study	we	do	not	focus	on	other	important	demographic	variables	such	
as	socio-economic	status	or	ethnic	background.	Data	on	COVID-19	mortality	is	taken	from	
the	CDC,	and	we	downloaded	on	July	12th	2020	the	complete	dataset	which	accounted	for	all	
confirmed	COVID-19	mortalities	State-by-State	as	of	July	4th	2020.	We	use	the	cumulative	
number	of	deaths	up	to	this	date	for	all	States,	regardless	of	the	start	date	of	the	epidemic	
for	that	State.	This	data	will	be	for	deaths	over	an	approximately	three-month	period	for	all	
States,	and	as	such	will	be	relatively	independent	of	transient	effects,	as	the	peak	of	the	
(first	wave	of)	the	epidemic	will	have	occurred	for	every	State	prior	to	this	data	collection	
date.	Note,	subsequent	second	waves,	particularly	in	the	western	States	occurred	after	this	
date.	The	historical	data	for	epidemic	start-dates	for	each	State	were	taken	from	
worldometers.info,	a	website	that	charts	cases	and	mortalities	for	each	State	over	the	entire	
course	of	the	epidemic,	and	sources	its	data	from	State	and	federal	databases.	As	discussed	
above,	the	epidemic	start	date	will	be	relatively	insensitive	to	differences	in	reporting	State-
to-State,	given	the	exponential	increase	in	the	epidemic	in	each	State.		
	

2.4	States	and	other	regions	considered	
Of	the	50	States	in	the	US	we	decided	to	analyse	data	for	the	25	worst-affected	States	in	
terms	of	absolute	number	of	COVID-19	deaths	as	of	July	4th	2020	according	to	the	CDC	
dataset.	We	denote	this	set	of	States	as	US25.	States	outside	of	this	group	had,	as	of	July	4th	
2020,	absolute	mortality	counts	well	below	1000	deaths,	which	once	distributed	across	age	
classes	are	increasingly	non-robust	for	analysis	due	to	small-number	statistics.	We	also	
perform	an	analysis	of	the	north-east	of	the	US	centred	on	NYC,	and	for	this	we	calculate	
NMAPs	for	additional	States	outside	of	the	US25	along	with	the	District	of	Columbia.	Finally,	
in	discussing	trends	in	NMAPs	on	the	west	coast	of	the	US	we	include	mention	of	the	
Canadian	Province	of	British	Columbia;	thus	NMAPs	for	an	additional	US	State	(Oregon)	and	
the	three	largest	Canadian	Provinces	are	calculated	(though	not	accounting	for	gender).	
	

2.5	Health	scores	
Our	analysis	is	informed	by	measures	of	health	for	each	State.	We	use	the	2018	annual	
health	scores	for	each	State	produced	by	the	United	Health	Foundation	(their	methodology	
uses	35	factors	integrated	within	a	broad	WHO	definition	of	“health”).	The	scores	have	
values	given	by	the	standard	deviation	across	all	States,	varying	between	approximately	–1	
and	+1.	A	negative	score	indicates	a	health	score	below	the	national	average	and	vice	versa.		
We	group	States	into	categories:	low,	medium	and	high,	defined	by	scores	<	–0.35,	between	
–0.35	and	+0.35,	and	>	+0.35.	UHF	health	scores	for	US25	are	given	in	Table	1.	
	

2.6	Immune	system	decline	
The	human	thymus	declines	with	age	in	both	size	and	T-cell	output	(Gui	et	al.	2012,	Sottini	et	
al.	2014,	Palmer	et	al.	2018).	The	decline	follows	an	approximately	exponential	decay:	
	

immune decline ~ exp −α	× age class 	
	

We	will	refer	to	this	as	the	immune	decline	function	(IDF).	It	has	a	single	parameter	α	,	the	
rate	of	immune	decline,	with	the	approximate	value	α	=0.044	/year.	The	COVID-19	data	is	
reported	in	decadal	age	classes;	on	that	scale	α	=	0.44	/decade.	We	also	define	the	inverse	
of	the	IDF,	which	we	term	the	immune	barrier	function	(IBF)	(cf.	Appendix	A.2).		
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3.	Results	
	
In	this	section	we	present	our	analysis	of	US	COVID-19	data.	The	results	of	the	analysis	will	
be	of	general	interest,	independent	of	the	author’s	motivation	for	measuring	NMAPs	to	test	
the	PCF	hypothesis.	To	aid	the	reader,	we	have	broken	the	Results	section	into	subsections,	
of	which	3.2	and	3.4	provide	context	and	motivation	from	the	perspective	of	the	PCF	
hypothesis.	The	remaining	subsections	present	the	results	of	data	analysis.	Nine	key	findings	
emerge	from	this	analysis	and	are	presented	as	numbered	underlined	statements.	These	
findings	are	summarised	in	subsection	4.1.	Detailed	discussion	of	how	the	results	support	or	
refute	the	PCF	hypothesis	is	provided	in	section	4.	
	
3.1	NMAPs:	quality	of	data	and	properties	
	

We	first	illustrate	the	normalisation	procedure	that	takes	mortality	age	profiles	(MAPs),	
which	differ	markedly	in	their	magnitude	from	State	to	State,	to	unit	integral	NMAPs,	
thereby	allowing	more	robust	comparison	between	States.	In	Figure	1a	we	show	the	MAPs	
(upper	panel)	and	NMAPs	(lower	panel)	for	NY,	IN	and	OH.	The	data	used	to	generate	these	
profiles	(and	all	the	NMAPs	for	US25)	are	provided	in	Table	2.	We	note	that	the	MAPs	for	all	
three	States	rise	rapidly	with	increasing	age	class,	consistent	with	the	fact	that	COVID-19	
mortality	is	strongly	dependent	on	age.	The	MAP	for	NY	is	much	higher	than	that	for	IN	
which	in	turn	is	higher	than	OH,	reflecting	the	significantly	different	proportional	mortality	
of	COVID-19	in	these	three	States.	By	normalising	each	MAP,	such	that	each	profile	has	unit	
area	(i.e.	an	integral	of	unity),	we	arrive	at	the	NMAPs	shown	in	the	lower	panel.	There	are	
two	striking	observations	to	make.	First,	the	NMAPs	for	IN	and	OH	are	almost	identical.	In	
fact,	to	show	the	difference	between	the	two	NMAPs	we	use	larger	open	circles	for	the	IN	
data	to	allow	the	OH	data	to	be	seen.	Second,	the	NMAP	for	NY	is	flatter	than	the	IN/OH	
NMAPs.	This	indicates	that,	relatively	speaking,	COVID-19	mortality	was	more	spread	across	
age	classes	in	NY	than	it	was	in	IN	and	OH.	This	will	be	a	recurring	theme	in	the	analysis.	
	
F1:	NMAPs	are	well	approximated	by	exponential	functions	
Given	that	the	values	across	the	age	classes	of	an	NMAP	typically	range	over	two	to	three	
orders	of	magnitude,	it	is	necessary	to	plot	these	curves	on	a	log-linear	scale	in	order	to	see	
the	structure	of	the	profile	across	the	entire	set	of	age	classes.	Consequently,	in	Figure	1b	
(upper	panel)	we	show	log-linear	plots	of	the	NMAPs	for	NY	and	OH.	It	is	remarkable	that	
the	points	of	the	NMAP	for	each	State	lie	on	almost	perfectly	straight	lines.	The	
interpretation	of	this	behaviour	is	straightforward,	namely	that	the	NMAPs	are	extremely	
well	approximated	by	exponential	functions.	A	recent	study	of	age	dependence	of	COVID-19	
mortality	curves	has	reported	this	exponential	dependence,	which	is	indeed	well	known	in	a	
similar	form	for	all-cause	mortality	across	age	groups	(Promislow	2020).	
	
F2:	NMAPS	can	be	described	by	a	single	parameter:	the	NMAP	index	(NI)	
As	the	NMAPs	are	constructed	to	have	an	integral	of	unity,	the	exponential	behaviour	
implies	that	the	entire	NMAP	can	be	captured	by	a	single	parameter,	which	we	call	here	the	
NMAP	index	(NI).	The	NI	is	a	rate,	having	dimensions	of	/decade.	Explicitly,	the	dependence	
of	the	NMAP	on	age	class	can	be	written	as	an	exponential	function	as	follows:	
	

	 NMAP = 𝐶 exp NI × age class        .	 (1)	
	

The	prefactor	C	is	a	constant	related	to	NI	ensuring	unit	area.	On	taking	natural	logarithms	of	
both	sides,	this	will	reduce	to	the	equation	of	a	straight	line	on	a	log-linear	plot,	namely:		
	

	 log NMAP = NI × age class + log 𝐶    	 (2)	
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Therefore,	the	NI	can	be	directly	inferred	as	the	slope	of	a	straight	line	fit	to	the	log-linear	
plot	of	the	NMAP.	Such	straight-line	fits	are	shown	for	NY	and	OH	in	Figure	1b	(upper	panel).	
Their	slopes,	which	are	the	NIs,	are	given	in	Table	3,	along	with	the	NIs	for	all	States	in	US25.	
The	exponential	nature	of	the	NMAP	is	shown	explicitly	in	Figure	1b	(lower	panel)	where	we	
plot	the	data	points	for	the	NMAP	of	OH	along	with	the	exponential	curve	derived	from	the	
NI	for	OH.	The	curve	passes	through	the	data	points	very	accurately,	and	we	see	how	
extraordinarily	well	the	simple	exponential	function	characterises	the	OH	NMAP.		
	
This	fact	provides	us	with	a	useful	tool	to	quantitatively	compare	the	NMAPs	between	
different	States.	So	long	as	the	NMAP	for	a	given	State	is	well	approximated	by	an	
exponential	function	we	can	use	the	NI	as	a	single	parameter	to	describe	the	NMAP,	
allowing	a	straightforward	quantitative	comparison	between	NMAPs,	and	also	allowing	the	
measurement	of	potential	NMAP	correlations	from	one	State	to	another.	
	
Returning	to	Figure	1b	(upper	panel)	we	see	that	the	flatter	NMAP	for	NY	compared	to	OH,	
when	shown	on	a	log-linear	curve,	corresponds	to	a	straight	line	for	NY	with	a	lower	slope	
than	that	for	OH.	Thus,	the	NI	for	NY	will	be	lower	than	that	for	OH.	Indeed	their	respective	
values	are	0.827	(1.5%)	and	1.077	(0.8%)	(cf.	Table	3).	Given	the	NMAPs	for	OH	and	IN	are	so	
similar	we	expect	their	NIs	to	be	very	close,	and	indeed	this	is	the	case.	The	NI	for	IN	is	1.088	
(1.7%).	We	have	given	in	each	case	the	percentage	error	in	the	NI,	which	arises	from	fitting	a	
straight	line	to	the	log-linear	plot	of	the	NMAP.	This	is	a	guide	to	how	well	the	NMAP	is	
approximated	by	an	exponential	function.	As	can	be	seen	from	Table	3,	the	vast	majority	of	
the	States	in	US25	have	very	low	percentage	errors	in	their	NIs.	However,	there	are	a	few	
exceptions.	In	Figure	1c	we	show	the	NMAPs	for	the	two	States	with	the	largest	NI	errors,	AZ	
(upper	panel)	and	AL	(lower	panel),	along	with	the	best	fits	of	an	exponential	function.	It	is	
clear	that	the	data	is	not	well	described	by	a	simple	exponential	function,	namely	that	the	
NMAPs	cannot	be	characterised	by	a	single	parameter.	The	NIs	for	AZ	and	AL	have	
percentage	errors	of	10.9%	and	6.1%.	We	therefore	introduce	a	cut-off	of	5.0%	as	the	
maximum	tolerable	error	in	the	NI	for	a	given	State’s	NMAP	to	be	accepted	as	well-
represented	by	an	exponential	function.	This	cut-off	removes	only	AZ	and	AL	from	US25	in	
studying	the	NMAPs	for	total	populations	(i.e.	including	both	male	and	female	sub-
populations).	We	have	also	calculated	NIs	for	the	male	and	female	sub-populations	in	each	
State	(Table	3).	Four	States	fail	the	5%	cut-off	within	the	male	data,	and	six	States	fail	the	5%	
cut-off	within	the	female	data.	Thus,	with	a	5%	error	threshold	we	retain	84%	of	the	possible	
data	in	using	the	NIs	for	subsequent	analysis	(63	of	the	possible	75	NMAPS:	19,	21	and	23	
States	of	US25,	respectively,	for	the	male,	female,	and	total	population	analyses).	
	
3.2	Expectations	of	trends	in	NMAP	indices	(NIs)	from	the	PCF	hypothesis	
	

A	high-level	schematic	of	the	PCF	hypothesis	is	shown	in	Figure	2.	For	a	detailed	motivation	
and	explanation	of	the	PCF	hypothesis	we	recommend	that	the	reader	consult	the	original	
paper	(Newman	2020).	In	brief,	it	is	hypothesised	that	infected	individuals	are	the	source	of	
an	immunological	pre-conditioning	influence	or	field	(denoted	by	PCF)	which	can	spread	far	
more	widely	than	the	short-range	infection	dynamics	of	the	live	virus.	One	possible	
instantiation	of	the	PCF	is	viral	detritus	(ViDe);	namely,	that	along	with	live	virus,	infected	
individuals	emit	(through	exhalation	and	coughing)	viral	fragments	and	immune	system	
detritus	into	the	air.	ViDe	will	travel	long	distances	in	air	currents	and	will	have	biological	
potency	if	inhaled	by	distant	susceptible	individuals,	so	long	as	the	molecular	structure	(e.g.	
folded	protein	conformations)	of	ViDe	components,	such	as	SARS-CoV-2	spike	proteins,	is	
retained	under	atmospheric	conditions.	Theoretical	analysis	(Newman	2020)	has	shown	that	
the	PCF	hypothesis	provides	a	parsimonious	explanation	for	many	features	of	the	COVID-19	
disease	dynamics.	
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Referring	to	Figure	2,	an	epicentre	of	COVID-19	will	have	dynamics	dominated	by	short-
range	contact	infection.	As	the	infected	population	grows,	the	PCF	in	turn	increases	in	
amplitude	and	will	spread	to	neighbouring	regions	which	are	yet	to	experience	high	levels	of	
infection.	Within	the	PCF	hypothesis,	individuals	in	these	regions,	on	exposure	to	the	PCF,	
are	immunologically	pre-conditioned.	The	degree	of	pre-conditioning	for	an	individual	will	
vary	depending	on	the	sensitivity	and	selectivity	of	that	individual’s	immune	system.	It	is	
expected	that	pre-conditioning	will	significantly	alter	the	overall	impact	of	the	epidemic	on	
the	neighbouring	region	as	compared	to	that	in	the	original	epicentre.	It	is	not	
straightforward	to	measure	this	difference	in	terms	of	absolute	numbers	of	cases	and	
deaths,	because	these	depend	strongly	on	other	factors,	such	as	the	flux	of	infected	
individuals	into	the	region,	population	density,	underlying	demographic	distributions,	and	
timing	and	enforcement	of	control	measures	such	as	lockdowns.	The	normalisation	of	the	
NMAP	removes	much	of	the	effect	of	region-to-region	demographic	and	population	density	
differences,	and	differences	in	absolute	numbers	of	cases	and	deaths.	As	such,	through	a	
study	of	NMAPs,	we	can	seek	to	measure	differences	in	neighbouring	regions	which	might	
arise	from	the	PCF.	In	this	study	of	US25	we	generally	consider	a	“region”	to	be	a	State.		
	
As	mentioned	above,	within	the	PCF	hypothesis	pre-conditioning	requires	both	sensitivity	
and	selectivity	of	an	individual’s	immune	system	in	order	to	provoke	an	immunological	
response,	providing	some	degree	of	protection	on	later	exposure	to	live	virus.	The	vigour	of	
the	immune	system	declines	steeply	with	age	(Montecino-Rodriguez	et	al.	2013,	Palmer	et	
al.	2018),	and	so	we	expect	that,	likewise,	the	efficacy	of	pre-conditioning	falls	off	steeply	
with	age.	Thus,	the	relative	impact	of	COVID-19	on	the	elderly	compared	to	younger	age	
classes	will	be	greater	in	a	pre-conditioned	population	than	in	a	non-pre-conditioned	
population.	As	such,	we	predict	that	the	NMAPs	for	regions	with	pre-conditioning	will	be	
shifted	towards	older	age	classes.	Given	the	NMAPs	of	nearly	all	States	have	an	exponential	
form,	this	predicted	shift	towards	older	age	classes	will	be	reflected	by	a	higher	NI	(i.e.	a	
straight	line	NMAP	which	is	steeper	when	plotted	on	a	log-linear	curve).		
	
Therefore,	a	prediction	of	the	PCF	hypothesis	is	that	NIs	for	States	neighbouring	an	
originative	epicentre	will	be	higher	than	that	of	the	epicentre	itself.	On	a	larger	geographical	
scale,	States	which	have	remained	free	from	COVID-19	infections	for	a	longer	time	period	
will	have	experienced	a	more	prolonged	period	of	pre-conditioning,	and	so	the	PCF	
hypothesis	predicts	that	the	later	a	State	is	first	exposed	to	the	epidemic	(through	infected	
individuals	eventually	entering	that	State)	the	higher	will	be	its	NI	compared	to	States	which	
experienced	the	epidemic	earlier.	
	
3.3	Variation	of	NMAP	indices	with	the	start	date	of	epidemics	
	

F3:	NIs	are	positively	correlated	with	epidemic	start	dates		
To	test	this	second	large-scale	prediction	of	the	PCF	hypothesis	we	plot	the	NIs	for	US25	
against	the	date	when	each	State	reached	epidemic	status.	We	use	two	different	measures	
of	such	a	date,	as	explained	in	subsection	2.1.	Definition	1	is	the	date	of	1000	or	more	cases	
in	a	particular	State,	and	definition	2	is	the	date	of	50	or	more	deaths	in	a	particular	State	
(cf.	Table	1).	NIs	for	each	State,	along	with	relative	errors,	are	given	in	Table	3.	Plots	of	NI	
versus	start	date	are	shown	in	Figure	3a	for	total	populations	(combined	male	and	female	
sub-populations)	using	definition	1	(upper	panel)	and	definition	2	(lower	panel).	Straight	line	
fits	are	also	shown.	The	correlation	coefficients	and	associated	p-values	are	given	on	the	
plots.	We	see	that	for	both	definitions	of	start-date	there	is	a	moderately	strong	positive	
correlation	between	NI	values	and	start	date	of	epidemic,	and	the	correlation	is	statistically	
significant.	We	note	that	the	two	originative	States,	NY	and	WA,	have	disparate	NIs.	We	will	
look	at	these	two	States	in	more	detail	in	subsections	3.5	and	3.6	respectively.	
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F4:	NIs	for	male	sub-populations	are	lower	than	those	for	female	sub-populations		
Figures	3b	and	3c	show	the	corresponding	plots	for	male	and	female	sub-populations	
respectively.	In	three	of	the	four	plots	there	is	a	statistically	significant	positive	correlation	
between	NI	values	and	start-date	of	epidemic	(note	the	p-value	for	the	male	plot	using	
definition	2	of	the	start-date	is	0.0572	and	so	although	the	data	shows	a	positive	correlation,	
this	lies	outside	the	commonly	used	5%	definition	of	significance).	Note	that	the	NIs	for	
males	are	lower	than	those	for	females	in	all	the	States	within	US25	(except	for	AL,	but	for	
this	State	all	NIs	fail	the	5%	error	threshold).		
	
F5:	Deviations	in	the	NI/start-date	correlation	are	strongly	dependent	on	State	health	scores		
In	all	of	the	plots	in	Figure	3	we	note	that	there	are	some	States	which	deviate	quite	strongly	
from	the	line	of	best	fit.	Some	insight	into	these	deviations	is	possible	by	colouring	the	
points	according	to	the	UHF	health	scores	of	the	corresponding	States:	green,	blue	and	
purple	corresponding	to	high,	medium	and	low	health	scores	respectively	(see	subsection	
2.5).	Those	States	which	deviate	strongly	in	the	positive	direction,	most	notably	MA,	CT	and	
CO,	have	high	health	scores.	Those	States	which	deviate	strongly	in	the	negative	direction,	
most	notably	MS	and	TX,	have,	respectively,	low	and	low-medium	health	scores.		
	
This	is	in	accordance	with	the	predictions	of	the	PCF	hypothesis.	The	population	in	a	State	
with	a	lower	health	score	will	tend	to	have	relatively	higher	rates	of	illnesses	such	as	
diabetes	and	cancer	in	individuals	of	younger	age	classes,	which	in	turn,	on	average,	reflects	
greater	challenge	with	immune	health.	As	such,	pre-conditioning	will	be	less	effective	in	the	
younger	age	classes	of	a	State	with	a	low	health	score	than	in	a	State	with	a	high	health	
score.	In	such	a	State,	the	impact	of	COVID-19	will	thereby	be	more	spread	out	across	age	
classes,	and	the	NI	consequently	lower	than	expected	based	purely	on	start	date.	
	
By	contrast,	in	States	with	high	health	scores,	the	PCF	hypothesis	predicts	full	response	of	
pre-conditioning,	which	implies,	within	the	PCF	hypothesis,	that	a	majority	of	individuals	in	
most	age	classes	will	have	a	degree	of	buffering	from	COVID-19.	Only	the	very	elderly,	
whose	immune	systems	are	in	a	late	stage	of	decline,	will	fail	to	benefit	from	the	PCF.	As	
such,	the	NMAP	will	be	steeply	tilted	across	the	age	classes	yielding	a	higher	value	of	the	NI.	
	
F6:	The	total	variation	in	NIs	is	comparable	to	the	rate	of	immune	system	decline	
The	NI	has	dimensions	of	/decade	(i.e.	per	decade),	and,	as	such,	is	a	rate	constant,	
measuring	the	rate	of	impact	of	COVID-19	as	a	function	of	age	class.	From	Figures	3a-c	it	is	
striking	that	in	all	three	sets	of	plots	(combined,	male,	female)	the	total	variation	of	NIs	is	
between	0.40	to	0.45,	very	close	to	the	decadal	rate	of	decline	of	the	immune	system,	α	
=0.44	/decade.	This	suggests	that	the	difference	in	NIs	across	the	States	is	directly	related,	
mechanistically,	to	immune	system	function.	In	the	following	subsection	we	explain	how	this	
result	can	be	naturally	explained	within	the	framework	of	the	PCF	hypothesis.	
	
3.4	The	PCF	hypothesis	in	terms	of	inter-regional	disease	dynamics	
	

In	Figure	4	we	provide	a	schematic	figure	explaining	the	inter-regional	effects	of	the	PCF	
within	the	classic	susceptible-infected-recovered	(SIR)	compartment	model	of	epidemiology.	
(Intra-regional	PCF	dynamics	are	explored	in	detail	in	Newman	2020.)	In	Figure	4,	Region	1	
experiences	the	epidemic	well	before	Region	2.	The	PCF	will	increase	in	magnitude	as	the	
number	of	infected	individuals	in	Region	1	grows,	and	will	spread	into	neighbouring	Region	
2.	In	this	simplified	model,	the	PCF	is	assumed	to	act	on	susceptible	individuals	in	Region	2	
before	the	epidemic	has	subsequently	taken	hold	in	that	region.	In	practice,	the	influence	of	
pre-conditioning	may	be	concurrent	with	a	significant	influx	of	infected	individuals	from	
Region	1	(purple	arrow),	and	the	subsequent	scale	of	cases	and	mortality	in	Region	2	will	be	
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strongly	sensitive	to	the	relative	intensities	of	these	two	influences	(influx	of	infected	
individuals	and	the	spreading	PCF)	from	Region	1.	Assuming	PCF	to	be	the	dominant	
influence	in	the	short-term,	all	susceptible	individuals	in	Region	2	will	experience	the	PCF.	
However,	the	degree	to	which	the	PCF	provides	immunological	buffering	for	a	given	
individual	in	Region	2	will	depend	strongly	on	the	sensitivity	and	selectivity	of	that	
individual’s	immune	system.	In	particular,	pre-conditioning	will	be	significantly	less	effective	
for	the	elderly.	Hence,	as	discussed	in	subsection	3.2,	we	expect	the	NI	to	be	higher	in	
Region	2	compared	to	Region	1.	It	is	not	possible	to	make	predictions	about	case	numbers	
and	mortality	rates	in	Region	2	compared	to	Region	1	because	of	the	many	confounding	
factors	discussed	earlier,	such	as	population	density,	socio-economic	and	ethnic	
distributions,	regional	responses	such	as	lockdowns,	influx	of	infected	individuals	etc.	If	all	of	
these	factors	were	equal	in	both	regions	then	the	PCF	hypothesis	would	predict	significantly	
smaller	numbers	of	cases	and	deaths	in	Region	2	compared	to	Region	1.	
	
The	key	point	of	Figure	4	is	to	make	clear	at	which	point	immune	system	health	affects	pre-
conditioning	response	in	Region	2	(see	red	arrow	Figure	4).	Assuming	all	individuals	have	
experienced	PCF	the	susceptible	population	becomes	a	pre-conditioned	population.	As	
infected	individuals	from	Region	1	interact	with	this	population,	local	contact	infections	may	
occur.	For	those	individuals	who	have	strongly	benefitted	from	pre-conditioning,	infection	
with	live	virus	will	cause	very	mild	or	even	no	apparent	symptoms,	and	they	will	essentially	
not	experience	the	infection	–	we	label	them	in	Figure	4	as	“immune”.	For	those	pre-
conditioned	individuals	in	older	age	classes,	pre-conditioning	is	not	expected	to	provide	
immunity	per	se,	but	will	present	an	additional	immune	hurdle	for	the	infection	to	overcome	
if	it	is	to	cause	severe	infection.	It	is	well	documented	(Palmer	et	al.	2018	and	references	
therein)	that	the	incidence	of	illness	from	many	infectious	diseases	follows	an	exponential	
increase	with	age,	precisely	of	the	form	exp(𝛼 × age class),	namely	the	IBF	(inverse	of	the	
IDF).	This	has	been	argued	to	arise	from	stochastic	fluctuations	in	the	pathogen	load	in	the	
early	course	of	the	infection,	with	illness	occurring	if	an	immune	escape	threshold	is	
overcome,	that	threshold	declining	with	age	according	to	the	IDF	(Palmer	et	al.	2018).	
	
Thus,	according	to	this	simplified	model	of	a	population	which	has	experienced	the	PCF	
before	significant	influx	of	infected	individuals,	the	NMAP	of	Region	2	will	be	equal	to	
NMAP(Region	1) ×	IBF	(the	IBF	factor	arising	from	the	immune	barrier	provided	by	pre-
conditioning	as	explained	above).	Explicitly,	one	has	
	
	
	
	

NMAP (Region 2) = NMAP Region 1  × 𝐶!exp 𝛼 × age class     ,	 (3)	

where	the	factor	Ca’	is	a	constant	ensuring	that	the	NMAP	for	Region	2	has	unit	area.	
Informally,	one	might	say	that	the	NMAP	of	Region	2	is	an	“immune	boosted”	form	of	the	
NMAP	for	Region	1.	Given	that	the	NMAPs	follow	exponential	functions	themselves,	cf.	
Equation	(1),	on	taking	natural	logarithms	of	both	sides	we	have	the	prediction:	
	

	 NI Region 2  = NI Region 1 +  𝛼 	 (4)	
	

In	reality	this	simple	relationship	will	be	potentially	distorted	by	various	factors.	For	
example,	the	relationship	will	fail	if	the	underlying	health	scores	of	the	two	regions	are	
significantly	different.	The	relationship	will	also	fail	if	there	is	a	very	high	rate	of	influx	of	
infected	individuals	from	Region	1	into	Region	2	(primarily	commuters)	prior	to	a	significant	
period	of	pre-conditioning.	Generally,	we	would	expect	pre-conditioning	to	provide	benefit	
to	age	classes	with	strong	immune	health,	and	predict	that	NI Region 2 > NI Region 1 ,	
which	is	consistent	with	the	data	analysis	described	in	the	previous	subsection.	To	test	
Equation	(4)	requires	a	study	of	neighbouring	States,	so	we	turn	to	an	in-depth	analysis	of	
the	US	region	surrounding	the	major	COVID-19	epicentre	of	the	NYC	metropolitan	area.	
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3.5	In-depth	analysis	of	the	north-eastern	States	
	

NY	State	and	neighbouring	States	such	as	NJ,	MA	and	CT	have	experienced	some	of	the	
highest	COVID-19	mortality	rates	of	any	region	in	the	world	to	date	(Richardson	et	al.	2020,	
worldometers.info).	NY	and	WA	(on	the	west	coast	of	the	US)	experienced	epidemic	status	
prior	to	other	States	in	the	US.	Within	3	weeks,	all	US25	States	were	experiencing	the	
epidemic	(according	to	definition	1,	as	described	in	section	2).	Given	that	the	State	of	NY	
contains	one	of	the	largest	metropolitan	areas	in	the	US,	it	is	helpful	to	differentiate	the	
State	level	epidemic	from	that	of	NYC.	This	is	possible	as	the	CDC	dataset	collects	data	for	
NYC	and	NY	State	separately	(cf.	Table	4a).	For	the	purpose	of	analysing	the	north-eastern	
States	surrounding	NYC	we	also	look	at	mortality	data	for	north-eastern	States	outside	of	
US25,	namely	DE	and	NH,	along	with	the	District	of	Columbia	(DC)	(cf.	Table	4a).	Robust	
statistical	analysis	is	not	possible	for	additional	States	in	the	region	(ME,	VT	and	WV)	due	to	
their	relatively	low	numbers	of	COVID-19	deaths.	
	
F7:	NIs	are	directionally	clustered	about	NYC	increasing	from	west	to	east	
Figure	5	provides	a	simplified	map	of	the	north-eastern	US.	Each	State	is	labelled	with	its	
abbreviation	along	with	its	NMAP	index	(NI).	The	NIs	for	three	additional	regions	outside	of	
US25	(cf.	Table	5)	are	statistically	less	robust	due	to	their	relatively	small	number	of	deaths:	
the	NIs	of	DC	and	DE	have	errors	above	the	5%	threshold,	whilst	NH	has	missing	data	in	half	
of	the	age	classes,	due	to	the	privacy	protocol	of	the	CDC	(applied	when	there	are	less	than	
10	deaths	per	age	class).	The	less	robust	NIs	are	shown	in	Figure	5	in	parentheses.		
	
It	is	noteworthy	that	the	NI	for	NYC	(0.78)	is	significantly	lower	than	that	of	NY	State	when	
NYC	is	excluded	(0.95),	consonant	with	the	predictions	of	the	PCF	hypothesis;	namely,	that	
the	NI	will	be	lowest	in	an	originative	epidemic	epicentre.	The	NI	for	NY	State	as	a	whole	is	
0.83,	close	to	the	NYC	value,	showing	the	dominance	of	the	NYC	metropolitan	area	in	the	
NMAP	for	the	State	as	a	whole.	The	geographical	clustering	of	NI	values	is	striking.	For	those	
States	in	US25	east	of	NYC	(i.e.	the	New	England	States)	the	NIs	have	values	1.18,	1.18	and	
1.25	(for	CT,	RI	and	MA	respectively).	For	those	States	west	and	south-west	of	NYC,	the	NIs	
have	values	0.92,	1.00,	1.06,	1.06	(for	NJ,	MD,	PA	and	VA	respectively).	In	light	of	the	
discussion	of	inter-regional	effects	of	PCF,	and	considering	NYC	as	Region	1	and	New	
England	as	Region	2,	we	expect	NI New	England 	=	NI NYC +  𝛼 = 0.78 + 0.44 = 1.22 ,	
(cf.	Equation	4).	The	NIs	for	the	New	England	States	are	indeed	clustered	around	this	value.	
It	is	noteworthy	that	the	NIs	for	the	States	to	the	south	and	west	lie	almost	exactly	midway	
between	the	NYC	and	New	England	values,	possibly	due	to	partial	pre-conditioning.	
	
As	discussed	in	subsection	3.4,	the	PCF	prediction	given	in	Equation	(4)	will	be	valid	for	
Region	2	assuming	that	region	is	able	to	respond	fully	to	the	PCF.	Indeed,	those	States	in	
New	England	are	in	the	category	of	high	UHF	health	scores.	Consistent	with	this,	the	States	
to	the	west	and	south	of	NYC,	with	the	exception	of	NJ,	are	in	the	category	of	medium	UHF	
health	scores,	and	thus,	within	the	PCF	hypothesis,	might	not	be	expected	to	respond	fully	
to	pre-conditioning.	Further	discussion	of	these	geographical	correlations	is	provided	in	
section	4.	
	
F8:	NI	(MA)	=	NI	(NY)	+	rate	of	immune	system	decline		
To	illustrate	the	impact	of	Equation	(4),	it	is	instructive	to	compare	the	NMAPs	for	NYC	and	
MA.	(We	choose	MA	as	it	is	the	most	populous	and	distant	New	England	State	of	MA,	CT	and	
RI,	thereby	having	more	robust	statistics	and	presumably	proportionately	less	influx	of	
infected	individuals	through	commuter	traffic).	In	Figure	6a	we	show	the	NMAPS	for	NYC	
and	MA	on	both	linear	and	log-linear	scales.	The	straightness	of	the	lines	illustrates	how	well	
these	NMAPs	are	approximated	by	the	exponential	function	(indeed,	the	percentage	errors	
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in	the	NIs	for	NYC	and	MA	are	well	below	the	5%	threshold,	being	3.5%	and	1.1%	
respectively).	Following	the	discussion	of	subsection	3.4,	we	can	ask	how	closely	will	the	
“immune	boosted”	NMAP	for	NYC	compare	to	the	NMAP	for	MA.	In	Figure	6b	we	show	the	
NYC	NMAP	data	boosted	by	the	IBF,	alongside	the	MA	NMAP.	The	degree	of	overlap	is	very	
high.	It	is	necessary	to	use	larger	open	circles	as	symbols	for	the	NYC	immune	boosted	data	
in	order	for	some	of	the	MA	data	to	be	visible.		
	
More	consistent	with	the	inter-regional	conceptualisation	of	Figure	4	is	to	compare	
equivalent	regions,	i.e.	one	State	to	another.	Thus,	we	compare	the	“immune	boosted”	NY	
State	with	MA.	The	NI	for	the	NY	State	is	0.83,	close	to	the	value	for	NYC	itself,	and	this	value	
will	be	dominated	by	COVID-19	deaths	in	the	wider	NYC	metropolitan	area.	We	might	expect	
an	even	higher	degree	of	overlap	than	the	comparison	of	immune-boosted	NYC	to	MA,	since	
the	NY	State	and	MA	NMAPs	are	both	based	on	State-level	demographics	(e.g.	both	
containing	urban,	suburban	and	rural	communities).	The	comparison	of	NY	State	and	MA	
NMAPs	without	and	with	the	immune	boost	to	NY	State	are	shown	in	Figures	6c	and	6d	
respectively.	The	precision	of	overlap	is	remarkable.	These	findings	provide	very	strong	
support	for	the	inter-regional	predictions	of	the	PCF	hypothesis.		
	
3.6	A	preliminary	analysis	of	the	west	coast	States	
	

The	analysis	of	the	north-eastern	US	provides	an	insight	into	the	geographical	correlations	
between	NIs.	It	will	be	interesting	to	perform	similar	analyses	across	the	US	(e.g.	across	the	
Mid-West	and	across	the	southern	States),	but	this	is	beyond	the	scope	of	the	current	
Report.	However,	given	the	important	role	of	WA	as	a	co-originative	State,	along	with	NY,	
we	provide	a	preliminary	view	of	the	west	coast	States.		
	
F9:	NIs	increase	from	south	to	north	along	the	west	coast	of	US	and	S.	Canada	
We	first	note	that	the	NI	for	WA	is	significantly	higher	than	for	NY,	with	the	value	1.05.	
Interestingly,	this	is	similar	to	the	NI	values	of	the	States	to	the	south	and	south-west	of	NYC,	
which	within	the	PCF	hypothesis	would	be	considered	as	partially	pre-conditioned.	It	is	
therefore	interesting	to	ask	whether	it	is	possible	that	WA	experienced	weak	pre-
conditioning	prior	to	its	epidemic	status.	If	there	was	an	early	pre-conditioning	influence	in	
that	region,	we	might	expect	to	see	a	trend	in	NI	values	along	the	west	coast.	In	addition	to	
the	NI	for	CA	already	to	hand	we	therefore	collect	data	for	Oregon	and	for	the	region	north	
of	WA,	namely	the	Province	of	British	Columbia	(BC)	in	Canada	(cf.	Tables	4.1	and	4.2).	The	
calculated	values	of	NIs	for	these	four	regions	are	shown	in	Figure	7	(cf.	Table	5).	Note	that	
the	value	for	OR	is	statistically	less	robust	(due	to	relatively	low	COVID-19	mortalities)	and	is	
given	in	parentheses.		
	
There	is	a	clear	and	uniform	trend	of	increasing	NI	values	from	south	to	north,	ranging	from	
0.89	in	CA	to	1.25	in	BC.	To	get	a	sense	of	the	robustness	of	the	NI	value	for	BC	we	looked	at	
the	two	largest	Provinces	in	Canada,	namely	Ontario	(ON)	and	Quebec	(QC),	and	calculated	
their	NIs	(cf.	Table	4b	and	Table	5).	We	find	that	the	BC	value	is	similar	to	those	of	ON	and	
QC	(1.14	and	1.28	respectively).	All	three	of	the	States	on	the	west	coast	have	positive	UHF	
health	scores	(that	for	OR	is	0.295,	at	the	upper	end	of	the	medium	range,	cf.	subsection	
2.5).	An	interpretation	of	these	NI	values	within	the	PCF	hypothesis	is	briefly	explored	in	
section	4.	
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4.	Summary	and	discussion	
	
4.1	Summary	of	data	analysis	
	

In	this	Report	we	have	presented	a	detailed	analysis	of	the	age	profiles	of	COVID-19	
mortality	across	the	US.	We	have	used	CDC	data	for	the	period	02/01/20	to	07/04/20,	and	in	
order	to	achieve	robust	statistical	analysis	we	have	concentrated	on	the	25	States	with	the	
highest	numbers	of	COVID-19	mortalities,	this	group	denoted	by	US25.		
	
We	have	defined	a	normalised	mortality	age	profile	(NMAP),	cf.	subsection	2.2	and	Appendix	
A.1,	which	through	normalisation	is	less	dependent	on	variables	that	differ	intrinsically	from	
State	to	State,	such	as	demographic	distributions,	population	density,	and	manner	of	
enforcement	of	lockdown	procedures.	As	such,	NMAPs	can	be	calculated	for	each	State	in	
US25	and	meaningfully	compared.	The	NMAP	describes	how	the	burden	of	COVID-19	
mortality	is	spread	across	age	classes	within	a	given	State.	A	flatter	NMAP	indicates	that	
mortality	is	more	widely	spread	in	age	groups	outside	of	the	elderly,	whilst	a	steeper	NMAP	
indicates	that	mortality	is	very	highly	concentrated	in	the	elderly	population	of	that	State.		
	
The	decision	to	study	NMAPs	was	originally	made	in	order	to	test	the	PCF	hypothesis	
(Newman	2020),	and	we	will	discuss	how	the	analysis	of	NMAPs	has	informed	this	
hypothesis	in	subsection	4.2.	The	NMAP	results	are,	however,	interesting	in	their	own	right,	
and	so	we	first	summarise	the	set	of	nine	findings	resulting	from	the	analysis.	(These	
numbered	findings	will	be	referred	to	in	bold	font	in	the	discussion	below.)	
	
F	#	 Summary	
F1	 NMAPs	are	generally	well	approximated	by	exponential	functions	
F2	 NMAPs	can	be	described	by	a	single	parameter:	the	NMAP	index	(NI)	
F3	 NIs	are	positively	correlated	with	epidemic	start	dates	
F4	 NIs	for	male	sub-populations	are	lower	than	those	for	female	sub-populations		
F5	 Deviations	in	the	NI/start-date	correlation	are	strongly	dependent	on	State	health	scores		
F6	 The	total	variation	in	NIs	is	comparable	to	the	rate	of	immune	system	decline	
F7	 NIs	are	directionally	clustered	about	NYC	increasing	from	west	to	east	
F8	 NI	(MA)	=	NI	(NY)	+	rate	of	immune	system	decline	
F9	 NIs	increase	from	south	to	north	along	the	west	coast	of	US	and	S.	Canada	
	
F1	is	a	critical	property	of	NMAPs	(cf.	Figure	1).	It	begs	the	question:	why	are	COVID-19	
mortality	curves	so	well	approximated	by	the	exponential	function?	For	our	purposes	it	
allows	a	simple	quantitative	comparison	between	the	NMAPs	of	different	States,	since	the	
normalised	exponential	function	is	described	by	a	single	parameter,	which	we	call	the	NMAP	
index	(NI).	This	is	the	content	of	F2.	To	determine	the	NI	for	a	given	State,	we	plot	the	NMAP	
on	a	log-linear	scale,	yielding	a	set	of	points	approximately	lying	along	a	straight	line.	The	NI	
is	the	slope	of	a	best-line	fit	through	that	set	of	points.	We	find	that	23	of	the	25	NMAPs	for	
US25	are	well-approximated	by	exponential	functions,	having	errors	in	the	fitting	of	NIs	≤	5%	
(cf.	Table	3).	Likewise,	when	analysing	NMAPs	for	male	and	female	sub-populations,	40	of	
the	50	NMAPs	satisfy	the	5%	error	threshold.	Thus,	84%	(63/75)	of	the	original	data	can	be	
subsequently	analysed	and	interpreted	using	NIs.	The	exceptions,	those	NMAPs	which	are	
not	describable	by	a	single	parameter,	presumably	have	exceptional	underlying	causes	for	
this,	possibly	relating	to	unusual	COVID-19	mortality	rates	in	younger	age	classes.		
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We	defined	for	each	State	in	US25	two	different	measures	of	epidemic	start	date	(based	on	
critical	numbers	of	either	cases	or	deaths,	thereby	providing	additional	robustness	to	the	
analysis).	We	plotted	NIs	for	US25	against	epidemic	start	dates	for	total	populations	in	each	
State	(Figure	3a)	and	male	and	female	sub-populations	in	each	State	(Figures	3b	and	3c	
respectively).	As	summarised	in	F3,	in	all	six	cases	we	found	that	there	was	a	positive	
correlation	which	for	five	of	the	six	cases	was	statistically	significant	at	the	5%	level	(the	plot	
for	male	sub-populations,	definition	2	for	start	dates,	has	a	p-value	slightly	greater	than	
0.05).	This	is	one	of	the	major	results	of	the	Report.	There	is	a	clear	trend	in	the	burden	of	
mortality	across	age	groups	in	a	given	State	depending	on	the	date	at	which	that	State	first	
experienced	the	epidemic.	States	experiencing	the	epidemic	later	in	time	have	higher	NIs,	
which	implies	that	in	those	States	the	elderly	are	carrying	more	of	the	burden	of	COVID-19	
mortality	relative	to	younger	sub-populations	in	that	same	State.	One	can	rephrase	this	
equally	accurately	as:	in	States	experiencing	the	epidemic	later,	the	younger	age	classes	are	
carrying	less	of	the	burden	of	COVID-19	mortality	relative	to	the	more	elderly	sub-
populations.	This	is	a	direct	prediction	of	the	PCF	hypothesis	(cf.	subsection	4.2)	but	may	be	
due	to,	for	example,	sociological	rather	than	biological	causes	(cf.	subsection	4.3).	
	
F4	states	that	in	all	cases	where	the	NIs	satisfy	the	5%	threshold	the	NI	for	females	is	greater	
than	that	for	males	in	a	given	State	(cf.	Figures	3b,	3c	and	Table	3),	and	this	is	regardless	of	
the	start	date	of	the	epidemic	in	a	given	State.	This	finding	is	similar	to	(though	not	
equivalent	to)	the	fact	that	male	mortality	outweighs	female	mortality	from	COVID-19	(cf.	
Table	2,	Dowd	et	al.	2020).	This	bias	is	consistent	with	the	higher	burden	of	many	infectious	
diseases	for	men	as	compared	to	women	(Guerra-Silveira	and	Abad-French	2013).	Crucially,	
though,	since	the	NMAPs	and	associated	NIs	are	normalised	measures,	F4	means	that	in	
females	the	relative	burden	of	COVID-19	mortality	is	non-linearly	shifted	to	higher	age	
classes	than	in	males	(potentially	related	to	gender	differences	in	rate	of	immune	decline).	
	
In	all	six	plots	shown	in	Figure	3	there	are	States	which	deviate	significantly	from	the	line	of	
best	fit.	The	points	representing	the	States	are	coloured	green	(high	health	score),	blue	
(medium	health	score)	and	purple	(low	health	score)	using	the	2018	UHF	dataset.	We	see	
that	the	outliers	well	above	the	line	tend	to	be	green,	whilst	the	outliers	well	below	the	line	
tend	to	be	purple	(or	blue	with	low	health	scores	within	the	wide	definition	of	“medium”),	as	
summarised	by	F5.	Thus,	States	with	lower	health	scores	tend	to	have	NMAPs	that	are	
relatively	less	sensitive	to	the	epidemic	start	date,	whilst	States	with	higher	health	scores	
tend	to	have	NMAPs	that	are	relatively	more	sensitive	to	the	epidemic	start	date.	This	is	a	
prediction	of	the	PCF	hypothesis	as	discussed	below.	Finally,	as	summarised	by	F6,	we	see	
from	Table	3	and	Figure	3	that,	for	male,	female	and	combined	populations	the	total	span	of	
NIs	is	between	0.4	and	0.45.	This	is	precisely	in	the	range	of	the	rate	of	immune	system	
decline	α	=0.44	/decade.	It	indicates	that	States	with	later	epidemics	have,	relative	to	earlier	
States,	a	shift	in	mortality	to	higher	age	classes	which	is	commensurate	with	the	ageing	
impact	of	immune	decline.	This	is	a	noteworthy	finding	in	its	own	right.	It	provides	very	
strong	support	for	the	PCF	hypothesis	as	discussed	below.		
	
Shifting	from	temporal	to	spatial	correlations,	Figure	5	shows	the	range	of	NIs	for	the	States	
(and	DC)	in	the	north-east	of	the	US.	Some	additional	NIs	have	been	calculated	for	States	
outside	of	US25.	Because	of	their	lower	relative	COVID-19	mortality	these	NIs	are	less	
statistically	robust	and	are	shown	in	parentheses	in	Figure	5	for	purposes	of	completeness	
and	transparency,	but	are	not	used	in	subsequent	analysis.	As	expressed	in	F7,	there	is	a	
striking	clustering	of	NI	values	about	the	epicentre	of	NYC	(NI	≃	0.78).	The	States	to	the	west	
and	south-west	of	NYC	have	NI	values	clustered	around	1.00	(≃	0.92,	1.00,	1.06,	1.06	for	NJ,	
MD,	PA	and	VA	respectively),	whilst	the	States	to	the	east	of	NYC	have	NI	values	clustered	
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around	1.20	(≃	1.18,	1.18,	1.25	for	CT,	RI	and	MA	respectively).	This	clustering	may	be	due	
to	intrinsically	different	common	factors	between	these	two	States,	such	as	health	scores,	
which	tend	to	be	medium	in	the	first	group	and	high	in	the	second.	It	might	also	indicate	a	
geographical	or	environmental	factor	influencing	the	burden	of	COVID-19	mortality	across	
age	classes.	We	will	discuss	this	below	in	terms	of	the	PCF	hypotheses.		
	
F8	summarises	a	remarkably	precise	finding;	a	prediction	of	the	PCF	hypothesis,	and	an	
intriguing	fact	in	its	own	right.	The	NIs	for	the	New	England	States	differ	from	that	of	NYC	by	
an	amount	almost	exactly	equal	to	the	rate	of	immune	system	decline	α	=0.44	/decade.	In	
particular,	Figures	6a	and	6b	show	first	the	NMAPs	for	NYC	and	MA,	and	then	replotted	with	
the	NYC	NMAP	boosted	by	the	immune	barrier	function	(IBF)	(an	exponential	function	with	
α	=0.44	/decade).	The	overlap	between	the	MA	and	“immune	boosted”	NYC	NMAPs	is	very	
high.	A	corresponding	analysis,	consistent	with	the	inter-regional	dynamics	of	Figure	4,	
compares	MA	to	NY	State,	and	is	given	in	Figures	6c	and	6d.	The	overlap	between	the	
NMAPs	of	MA	and	“immune	boosted”	NY	State	is	precise	to	a	remarkable	degree.		
	
The	analysis	of	spatial	correlations	of	NIs	in	the	north-eastern	region	of	the	US	shows	spatial	
correlations	in	the	form	of	clustering,	and	indicates	that	similar	analyses	are	worth	pursuing	
for	other	regions	of	the	US.	Given	the	finite	scope	of	this	Report,	we	do	not	pursue	these	
analyses	here,	beyond	a	brief	survey	of	the	States	surrounding	the	other	originative	State,	
namely	WA	on	the	north-western	coast.	States	directly	inland	of	WA	cannot	be	analysed	due	
to	low	relative	numbers	of	COVID-19	mortalities,	but	an	analysis	is	possible	south	to	north	
along	the	western	coast	of	US/S	Canada	taking	in	CA,	OR,	WA	and	BC.	As	expressed	in	F9,	we	
find	a	south	to	north	trend	of	increasing	NIs.	With	only	four	data-points,	statistical	power	is	
low,	so	this	finding	should	be	viewed	as	indicative	only,	and	is	discussed	briefly	below.		
	
4.2	Findings	in	the	context	of	the	PCF	hypothesis	
	

The	original	motivation	for	developing	a	robust	measure	for	each	State	that	could	be	then	
compared	across	States,	was	to	test	a	prediction	of	the	PCF	hypothesis;	namely,	consistent	
trends	of	the	impact	of	COVID-19	with	respect	to	the	start	dates	of	the	epidemic	in	each	
State.	Thus,	NMAPs	were	developed,	and	the	fact	that	they	follow	exponential	curves	and	
are	thereby	describable	by	a	single	parameter,	the	NI,	is	a	serendipitous	empirical	finding	
greatly	simplifying	subsequent	data	analysis.	F1	and	F2	are	consonant	with	the	exponential	
nature	of	age	mortality	curves,	and	recent	analysis	for	COVID	mortality	(Promislow	2020).	
	
We	refer	the	reader	to	the	recent	SOLARAVUS	Report	(Newman	2020)	for	the	motivation	
and	development	of	the	PCF	hypothesis.	The	core	idea	is	that	infected	individuals	are	the	
source	of	an	influence	that	immunologically	pre-conditions	susceptible	individuals	over	
larger	distances	than	short-range	contact	infection	from	live	virus	(cf.	Figure	2).	This	
influence	is	termed	the	pre-conditioning	field	(PCF).	The	use	of	the	word	“field”	is	not	
common	in	the	life	and	biomedical	sciences,	but	is	the	standard	term	in	the	natural	sciences	
for	an	influence	that	is	distributed	over	space.	One	possible	instantiation	of	the	PCF,	that	is	
discussed	at	great	length	in	the	previous	Report,	is	viral	detritus	(ViDe).	That	is,	the	non-live	
viral	fragments	and	associated	molecular	debris	emitted	by	infected	individuals	through	
exhalation	and	coughing,	including	potentially	bioactive	molecules	from	the	immune	
response.	ViDe	is	hypothesised	to	retain	biological	potency	after	being	carried	potentially	
quite	long	distances	by	air	currents,	and	could	then	provoke	a	weak	but	non-trivial	immune	
response	in	distant	susceptible	individuals.	Global	estimates	in	the	previous	Report	showed	
that	with	1	million	infected	individuals,	the	concentration	of	ViDe	was	sufficient	that	each	
individual	on	Earth	would	inhale	of	order	one	thousand	molecular	ViDe	fragments	per	day.	It	
might	be	helpful	for	the	reader	to	have	ViDe	as	their	mental	model	of	the	PCF	framework,	
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but	it	is	important	to	stress	that	the	general	predictions	of	the	framework	are	not	
dependent	at	this	stage	on	any	particular	instantiation	of	the	PCF,	such	as	ViDe.	
	
The	PCF	hypothesis	provides	a	clear	prediction	for	the	shift	in	NMAPs	that	would	occur	in	a	
pre-conditioned	population	relative	to	a	non-pre-conditioned	population,	and	this	is	
summarised	in	Figure	4.	A	description	of	this	Figure	explaining	the	role	of	the	PCF	is	given	in	
subsection	3.4.	The	key	point	is	that	a	pre-conditioned	individual	presents	the	virus	with	an	
additional	immune	hurdle	to	overcome.	The	height	of	the	hurdle,	so	to	speak,	depends	on	
immune	health,	i.e.	the	ability	of	that	individual’s	immune	system	to	respond	to	the	PCF.	The	
dominant	determinant	of	immune	health	is	age	(Montecino-Rodriguez	et	al.	2013,	Palmer	et	
al.	2018).	Therefore,	we	expect	that	the	effectiveness	of	pre-conditioning	decreases	with	
increasing	age.	Consequently	the	elderly	in	a	pre-conditioned	population	experience	a	
“double	hit”	relative	to	younger	age	classes	–	increased	risk	of	mortality	with	age	from	
COVID-19	and	a	decreased	benefit	from	pre-conditioning.	This	second	hit	steepens	the	
NMAP,	and	so	we	expect	from	the	PCF	hypothesis	that	NMAPs	will	tend	to	be	steeper	the	
longer	a	State	has	benefitted	from	pre-conditioning	prior	to	epidemic	status.		
	
This	prediction	is	borne	out	very	clearly	as	described	in	F3.	From	the	PCF	perspective,	we	
would	expect	to	see	deviations	from	the	average	trend	based	on	the	general	underlying	
immune	health	of	the	population,	as	stated	in	F5.	States	with	high	immune	health	would	
benefit	most	from	pre-conditioning,	and	contrariwise,	States	with	low	immune	health	would	
benefit	least.	In	a	State	with	poor	general	immune	health,	we	would	expect	only	modest	
impact	from	pre-conditioning,	and	in	such	a	State	there	is	barely	a	“double	hit”,	so	to	speak,	
on	the	elderly	population.	As	such,	such	States	would	tend	to	have	lower	than	expected	NIs,	
more	similar	to	NIs	of	non-pre-conditioned	States.	
	
The	decline	in	immune	health	with	age	is	driven	by	the	inexorable	decline	of	the	thymus	
starting	at	early	age,	which	in	turn	leads	to	a	decline	in	T-cell	diversity	with	age.	This	decline	
is	well	known	to	be	approximately	exponential,	with	the	thymus	approximately	halving	in	
size	every	16	years.	The	rate	of	decline,	which	we	denote	by	α,	has	the	approximate	value	α	
=0.44	/decade	(Sottini	et	al.	2014).	This	exponential	immune	decline	has	been	studied	in	
some	detail	(Palmer	et	al.	2018)	and	theoretical	arguments	predict	consequent	exponential	
increases	in	disease	incidence	with	age	which	are	in	good	agreement	with	data,	for	several	
infectious	diseases	(bacterial	and	viral)	and	a	wide	range	of	cancers.	More	recently,	the	role	
of	the	decaying	thymus	has	been	studied	in	relation	to	the	age	dependence	of	
hospitalisations	from	COVID-19	(Donnelly	and	Palmer	2020)	and	discussed	as	potentially	
pivotal	to	the	wider	immune	response	to	SARS-CoV-2	(Mourreau	et	al.	2020).	We	assume	
that	the	age	dependence	of	the	response	to	PCF	follows	this	same	exponential	dependence,	
and	we	term	this	the	immune	barrier	function	(IBF)	(cf.	subsection	2.6	and	Appendix	A.2).		
	
According	to	Figure	4,	the	additional	IBF,	which	SARS-CoV-2	has	to	overcome	in	a	pre-
conditioned	population,	leads	to	a	quantitative	prediction	on	the	steepening	of	the	NMAP.	
In	“ideal”	pre-conditioning	circumstances,	i.e.	a	population	with	a	high	health	score	and	a	
sufficiently	strong	PCF,	we	would	expect	nearly	all	COVID-19	cases	to	have	been	filtered	by	
the	IBF,	and	as	such	mortality	rates	across	age	class	would	occur	according	to	the	product	of	
the	“original”	NMAP	(which	is	a	function	of	the	disease	dynamics	in	a	non-pre-conditioned	
individual)	and	the	IBF.	Given	that	both	NMAPs	and	the	IBF	are	exponential	functions	of	age	
class,	this	leads	to	the	very	simple	prediction,	namely	Equation	4	in	subsection	3.4	–	an	
immune	boost	to	the	NI	by	an	amount	α	=0.44	/decade.	Thus,	F6	is	a	direct	prediction	of	the	
PCF	as	embodied	in	Figure	4,	and	it	is	striking	that	those	States	which	approach	the	greatest	
boost	in	their	NIs	are	CT,	MA	and	MN,	the	States	with	the	three	highest	health	scores.		
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One	might	argue	that	NIs	are	sure	to	be	greater	with	increasing	health	score,	based	on	an	
argument	that	the	elderly	will	have	weaker	immune	systems	in	all	populations,	but	that	
younger	age	classes	will	have	stronger	immune	systems	in	healthier	States.	The	second	part	
of	this	statement	is	no	doubt	true,	and	is	used	above	in	arguing	why	PCF	predicts	deviations	
from	the	NI/age	class	trend	in	terms	of	health	scores,	but	this	argument	alone	cannot	
explain	the	trend	in	Figure	3.	Note	that	States	with	early	epidemics,	such	as	NY,	NJ	and	CA,	
also	have	high	health	scores	but	low	NIs.	Within	the	PCF	hypothesis,	this	is	simply	because	
those	States	have	had	no	(or	slight)	benefit	from	pre-conditioning	prior	to	epidemic	onset.		
	
Another	test	of	the	PCF	hypothesis	is	possible	from	Figure	3,	by	looking	at	the	largest	
variation	of	NIs	for	the	male	and	female	sub-population	data	(Figures	3b	and	3c	
respectively).	The	thymus	is	known	to	decline	faster	for	males	than	females	(Gui	et	al.	2012)		
This	is	thought	to	underlie	some	of	the	differences	in	disease	susceptibility	between	the	
genders,	and	has	been	argued	to	account	for	the	widespread	differences	in	cancer	incidence	
between	men	and	women	(Palmer	et	al.	2018).	Precise	values	of	the	α	parameter	are	not	
available	for	separate	genders,	but	generally	we	have	𝛼male > 𝛼female	.	As	such,	the	maximal	
immune	boost	from	pre-conditioning	should	be	greater	in	males	than	females.	Thus,	the	
largest	variations	in	NI	for	the	male	sub-populations	should	be	greater	than	for	the	female	
sub-populations.	This	is	indeed	the	case,	as	seen	from	Table	3,	with	the	largest	variation	in	
the	male	data	being	0.452	compared	to	that	in	the	female	data,	which	is	0.422.	These	values	
depend	on	outliers	are	so	are	not	on	the	same	footing	of	statistical	robustness	as	the	nine	
main	findings	summarised	in	subsection	4.1.	
	
A	critical	aspect	of	the	PCF	hypothesis,	which	is	missing	from	the	schematic	in	Figure	4,	is	the	
role	of	geography.	If	the	PCF	is	a	spreading	influence	from	an	infected	population,	then	
regions	experiencing	a	higher	concentration	of	PCF	will	benefit	more	than	regions	with	a	
lower	concentration.	The	concentration	of	PCF	may	not	be	solely	related	to	distance	from	
the	infected	population,	because	of	environmental	factors.	For	example,	if	ViDe	is	
considered	as	the	instantiation	of	the	PCF,	then	it	will	be	carried	by	air	currents,	and	
concentration	will	be	mainly	determined	by	wind	direction	rather	than	distance	from	the	
epicentre	of	infection.		
	
Thus,	on	taking	the	role	of	space	and	geography	into	account,	the	PCF	hypothesis	does	not	
predict	a	perfect	correlation	between	NI	and	epidemic	start	date.	Critical	too	are	the	roles	of	
geographical	distance	and	PCF	concentration	in	relation	to	the	disease	epicentre(s).	Such	a	
spatio-temporal	study	on	the	national	scale	of	the	US	is	possible,	but	beyond	the	scope	of	
this	Report.	As	a	first	step,	though,	we	can	analyse	a	region	of	the	US	instead	of	the	entire	
country,	and	this	was	the	motivation	to	study	the	north-eastern	States	surrounding	the	
major	US	COVID-19	epicentre	of	NYC.	What	is	striking	from	F7	and	Figure	5	is	the	clustering	
of	NI	values	around	NYC.	Those	States	to	the	south-west	and	west	of	NYC	have	NIs	clustered	
around	1.00,	whilst	those	States	to	the	east	of	NYC	(i.e.	New	England)	have	NIs	clustered	
around	1.20.	A	deeper	analysis	is	required	to	tease	apart	the	underlying	reasons	for	this	
clustering.	The	metropolitan	area	of	NYC	extends	into	some	neighbouring	States,	and	the	
commuter	traffic	between	these	States	in	the	weeks	before	lockdown	will	have	been	very	
high.	The	scale	of	mobility	of	infected	individuals	in	the	region	will	play	a	major	role	in	the	
net	efficacy	of	pre-conditioning	in	the	weeks	following	the	NYC	epidemic.	Nevertheless,	one	
can	explore	some	consequences	of	the	PCF	hypothesis	with	NMAPs	alone.		
	
For	example,	given	the	high	health	score	of	MA	and	its	relatively	larger	distance	from	NYC	
(somewhat	mitigating	the	flux	of	infected	individuals	from	NYC	into	the	State),	and	assuming	
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that	it	experienced	a	high	level	of	PCF,	one	can	seek	a	test	of	Equation	4	in	comparing	the	
NIs	of	NYC	and	MA,	and	also	NY	State	with	MA	(given	the	greater	NYC	metropolitan	area	
dominates	the	NY	State	data).	This	is	the	content	of	F8.	The	fact	that	the	“immune	boosted”	
NMAP	for	NY	State	is	almost	perfectly	coincident	with	the	NMAP	of	MA	is	a	remarkable	fact.	
It	provides	a	tremendous	degree	of	support	for	the	PCF	hypothesis.	Regardless	of	PCF,	it	is	a	
fact	that	deserves	to	be	understood.	That	it	is	a	prediction	of	the	PCF	hypothesis	is	
important	in	building	the	case	for	the	PCF	idea,	but	deeper	testing	of	this	idea	is	of	course	
still	required.	It	is	often	said	that	“extraordinary	claims	require	extraordinary	evidence”,	and	
in	that	regard	F8	provides	some	extraordinary	evidence	supporting	the	PCF	hypothesis.		
	
The	clustering	of	NI	values	about	NYC,	when	viewed	through	the	lens	of	the	ViDe	
instantiation	of	the	PCF,	provides	another	test.	Given	that	NI	values	are	higher	to	the	east	of	
NYC,	this	might	imply	stronger	levels	of	pre-conditioning,	and	for	ViDe	this	requires	
dominant	air	currents	from	west	to	east	in	that	region	over	the	early	period	of	the	epidemic.	
A	detailed	study	of	such	a	question	requires	the	expertise	of	an	atmospheric	scientist.	
However,	a	preliminary	analysis	can	be	performed	by	looking	at	wind	direction	data	for	
major	cities	in	the	region	around	NYC	(obtained	from	weatheronline.co.uk	for	the	period	
March	to	April	2020).	Calculating	the	net	east-west	component	of	wind	directions	(namely	a	
vector	sum	of	the	compass	directions	weighted	by	the	percentage	of	wind	from	that	
direction	over	the	period),	we	find	that	for	each	of	the	major	cities	in	NJ,	NY,	CT,	RI	and	MA	
(namely	Newark,	NYC,	Hartford,	Providence	and	Boston)	the	net	component	of	wind	along	
the	west-east	axis	was	predominantly	westerly	(i.e.	from	the	west),	by	a	factor	ranging	from	
25%	to	over	100%.	Thus,	in	the	period	March-April	2020,	airborne	ViDe	emitted	in	the	NYC	
epicentre	would	on	average,	along	the	west-east	axis,	be	taken	east,	spreading	over	New	
England.	As	mentioned	above,	a	quantitative	analysis	requires	a	far	more	detailed	analysis,	
since	air	currents	will	have	different	directions	depending	on	altitude,	and	also	because	the	
PCF	would	have	new	sources	arising	as	the	epidemic	spreads	into	neighbouring	States.	We	
appeal	to	interdisciplinary	teams	of	atmospheric	scientists,	biophysicists,	epidemiologists	
and	immunologists	to	tackle	this	interesting	and	challenging	project,	should	they	be	
convinced	that	the	PCF	hypothesis	is	plausible	enough	to	deserve	more	in-depth	study.	
	
The	very	brief	analysis	of	the	west	coast	States	(and	British	Columbia	in	southern	Canada)	is	
required	even	in	this	first	Report	on	NIs	as	WA	State	is	significant	in	experiencing	the	
epidemic	very	early	(either	contemporaneous	with	or	slightly	earlier	than	NYC	depending	on	
definition	of	start	dates).	The	NI	for	WA	is	moderately	high,	at	1.05,	and	raises	an	obvious	
challenge	to	the	PCF	hypothesis.	The	NI	for	WA	implies	a	degree	of	pre-conditioning,	yet	it	is	
an	originative	State	in	the	US	in	terms	of	COVID-19.	F9	is	a	first	step	towards	answering	this	
question.	We	see	that	WA’s	NI	is	part	of	a	larger	trend	of	increasing	NIs	from	south	to	north	
along	the	west	coast.	In	the	spirit	of	the	PCF	hypothesis	this	would	imply	that	the	west	coast	
States	had	already	experienced	some	form	of	pre-conditioning,	increasing	from	south	to	
north.	This	was	in	fact	discussed	in	the	first	Report	(Newman	2020),	where	it	was	pointed	
out	that	regions	experiencing	severe	epidemic,	such	as	the	US	eastern	seaboard	and	Brazil,	
are	on	the	opposite	side	of	the	globe	from	the	original	epicentre	of	Wuhan,	China.	Thinking	
in	terms	of	ViDe,	and	considering	the	fact	that	Pacific	air	currents	in	the	band	35o–65	o	
latitude	are	strongly	westerly	(AMS	2020),	the	west	coast	States	would	have	received	higher	
levels	of	PCF	than	the	east	of	the	US.	Experts	in	atmospheric	science	can	provide	more	
detailed	analysis,	but	it	is	noteworthy	that	the	band	of	Westerlies	starts	just	north	of	Los	
Angeles	(ca.	34o),	and	that	its	centre	(where	presumably	the	flux	is	greatest)	lies	at	the	same	
latitude	as	Vancouver	(ca.	50o),	thus	increasing	south	to	north	as	the	NIs	would	indicate	in	
Figure	7.	We	note	that	this	continental	scale	of	PCF	dynamics	also	helps	to	explain	the	
remarkably	low	levels	of	COVID-19	mortality	in	Japan	in	the	earlier	phase	of	the	pandemic	
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(worldometers.info).	It	might	appear	counter-intuitive,	at	first	glance,	to	seriously	consider	
biological	relevance	of	continental	scale	dispersal	of	ViDe,	and	we	therefore	refer	the	reader	
to	recent	estimates	from	an	order-of-magnitude	analysis	(Appendix	1,	Newman	2020).	
	
On	a	final	technical	note	in	this	subsection,	we	stress	that	the	inter-regional	
conceptualisation	of	the	PCF	hypothesis	in	Figure	4	is	more	detailed	than	the	simplest	
compartment	model	of	PCF	described	in	the	first	Report	(Newman	2020,	Figure	1),	which	is	
essentially	an	intra-regional	conceptualisation,	modelling	the	effect	of	a	PCF	generated	
within	a	region	on	the	subsequent	disease	dynamics	within	the	same	region.	In	addition,	
that	simplest	of	models	explicitly	disregards	age	classes,	and	labels	individuals	either	as	
susceptible	or	pre-conditioned.	By	introducing	age	classes	in	Figure	4	we	are	introducing	a	
slightly	more	complicated	model	for	the	sake	of	realism,	in	which	now	all	individuals	are	pre-
conditioned,	but	by	varying	degrees	depending	on	age	class.	Infected	individuals	will	arise	
from	this	heterogeneous	pre-conditioned	compartment,	filtered	by	the	IBF.	
	
4.3	Alternative	explanations	for	key	findings	
	

We	offer	a	brief	discussion	of	alternative	explanations	for	the	more	striking	findings	from	
this	analysis.	It	is	possible	that	similar	arguments	have	already	been	made	on	related	data	in	
the	exponentially	growing	COVID-19	literature,	and	we	apologise	here	if	key	arguments	
already	published	or	in	preprint	form	are	unwittingly	duplicated	in	this	subsection	without	
reference.		Given	this	author	is	advancing	the	PCF	hypothesis,	and	finding	it	to	be	generally	
supported	by	the	data	analysis	in	this	Report,	the	onus	is	on	others	in	the	community	to	
support	and/or	refute	it	with	new	insights	and	analyses,	should	they	be	so	inclined.	
	
Turning	first	to	F3–F6	which	arise	mainly	from	Figure	3,	the	clear	fact	that	needs	to	be	
explained	is	what	caused	NMAPS	to	shift	towards	older	ages	in	States	that	experienced	the	
epidemic	later.	This	finding	shows	that	the	NMAP	of	the	epidemic	in	a	given	State	is	very	
sensitive	to	the	absolute	time	at	which	that	State	first	experienced	the	epidemic,	relative	to	
the	course	of	the	larger	scale	epidemic	throughout	the	US.	It	is	very	different	from	the	
recent	simulation	result	predicting	that	in	a	given	region	the	burden	of	mortality	shifts	to	
older	age	groups	during	the	course	of	the	epidemic	in	that	region	(Davies	et	al.	2020).	It	is	
also	important	to	stress	that	this	finding	is	not	concerned	with	absolute	numbers	of	cases	or	
mortalities	within	a	given	State,	but	about	the	cumulative	relative	impact	on	different	age	
classes	within	the	same	State.	An	explanation	for	this	dependence	on	start	date	that	comes	
to	mind	readily	is	sociological;	States	that	experienced	the	epidemic	later	had	more	time	to	
prepare.	For	example,	MN	had	three	weeks	to	prepare,	from	the	epidemic	status	of	NY	and	
WA	in	mid	March,	until	its	own	epidemic	status	in	early	April.	One	would	presumably	then	
argue	that	more	time	to	prepare	allows	a	State	in	particular	to	optimise	its	protection	of	the	
most	vulnerable	members	of	the	population,	particularly	the	elderly,	through	lockdowns	and	
other	preventative	measures.	This	argument	then	predicts	relatively	less	exposure	of	the	
elderly	to	infection,	and	hence	lower	levels	of	mortality	in	the	highest	age	classes	–	precisely	
the	opposite	trend	to	what	is	in	fact	observed.	It	may	indeed	be	the	case	that	this	negative	
correlation	is	“hiding”	in	the	data	but	being	overwhelmed	by	the	positive	correlation,	that	
we	hypothesise	is	being	caused	by	PCF.	However,	this	natural	sociological	explanation	
(assuming	equal	rates	of	compliance	with	lockdown	measures	across	age	groups)	does	
indeed	predict	a	correlation,	but	a	negative	one,	and	completely	at	odds	with	the	data.	A	
negative	correlation,	at	odds	with	the	data,	would	also	arise	from	a	similar	argument	that	
medical	treatment	of	the	elderly	improved	over	the	course	of	the	US	epidemic,	thereby	
relatively	benefitting	elderly	patients	in	States	with	later	start	dates	compared	to	elderly	
patients	in	States	with	earlier	start	dates.	
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Perhaps	“start	date”	is	a	red	herring?	Detailed	US	studies	are	emerging,	examining	the	
dependence	of	US	COVID-19	mortality	on	a	multifactorial	range	of	demographic	and	
environmental	factors	(e.g.	Loomba	et	al.	2020,	Mollalo	et	al.	2020,	Zhang	and	Schwartz	
2020).	Perhaps	there	are	intrinsic	properties	of	States	that	explain	the	differences	in	NMAPs	
between	States,	and	which	coincidentally	give	rise	to	the	correlations	shown	in	Figure	3.	In	
other	words,	are	the	correlations,	despite	their	statistical	significance	(which	are	in	some	
cases	quite	strong),	just	coincidences	after	all?	To	answer	this	question	requires	such	
intrinsic	factors	to	be	identified,	and	then	to	show	that	the	statistical	correlation	of	NIs	with	
the	variation	of	the	intrinsic	factor	is	stronger	than	the	correlations	shown	here	in	terms	of	
start	date.	Such	an	explanation	would	also	need	to	account	for	F5	and	F6.	The	first	of	these	
is	not	surprising,	but	the	second	is,	and	it	might	start	to	stretch	the	credulity	of	the	objective	
observer	if	this	too	were	to	be	labelled	as	coincidence.	As	such,	it	does	appear	that	the	
decline	of	the	immune	system	is	playing	a	key	role	in	determining	the	NMAPs,	and	so	an	
intrinsic	factor	underlying	NMAP	variation	would	likely	be	closely	related	to	immune	health.		
	
Considering	the	geographical	clustering	of	NIs	seen	in	F7–F9,	this	provides	a	good	testing	
ground	for	identification	and	analysis	of	possible	intrinsic	properties	of	States	that	might	
explain	trends	in	NIs.	The	intrinsic	factor	would	need	to	have	a	common	value	across	those	
States	south-west	and	west	of	NYC,	and	a	different	common	value	across	New	England.	And,	
these	common	values	would	need	to	be	different	in	both	cases	to	the	value	of	that	intrinsic	
factor	in	NYC.	This	seems	difficult	to	achieve	with	only	one	factor,	and,	more	likely,	weighted	
combinations	of	factors	may	be	necessary	to	attempt	to	describe	the	clustering	of	NIs.		
	
4.4	PCF:	further	tests,	relevance	and	application	
	

The	analysis	of	NMAPs	across	the	contiguous	US	has	revealed	some	fascinating	properties	of	
the	impact	of	COVID-19	across	age	classes,	both	as	a	function	of	start	date	of	epidemic	and	
geography.	It	would	therefore	be	of	interest	to	analyse	similar	datasets	for	other	large	
regions	of	the	world,	e.g.	continental	Europe	and	S.	America.	Key	will	be	moderated	datasets	
across	the	entire	region	to	minimise	intrinsic	differences	in	reporting	COVID-19	mortalities,	
thus	allowing	a	relatively	unbiased	comparison	of	NMAPs	from	one	country	to	the	next.		
	
A	related	test	is	to	study	the	time	evolution	of	the	NMAP	within	one	country.	There	will	be	
potential	variations	due	to	changing	social	conditions,	e.g.	introduction	of	or	ending	of	
lockdowns,	but	over	a	period	of	relatively	unchanging	social	behaviours	it	might	be	possible	
to	test	the	PCF	hypothesis.	The	PCF	prediction	is	that	intra-regional	pre-conditioning	will	
increase	over	the	period	that	infection	numbers	increase,	and	as	such	the	NMAP	will	
steepen	over	time,	until	some	form	of	saturation	is	reached.	This	shift	will	not	be	observable	
if	a	significant	PCF	already	existed	in	the	region,	having	originated	from	elsewhere	prior	to	
high	levels	of	infection	in	the	region,	so	it	will	be	important	to	study	this	effect	in	a	region	
that	was	isolated	from	PCF	influences	prior	to	epidemic.	Of	course,	this	requirement	is	
difficult	to	meet	if	the	precise	mechanism	of	PCF	is	unknown	(should	it	even	exist),	but,	for	
example,	if	ViDe	is	taken	to	be	the	instantiation	of	the	PCF,	one	can	select	a	region	which	
was	relatively	isolated	from	global	air	currents	from	prior	areas	of	high	infection.	Brazil	
might	serve	as	a	good	candidate	for	this	study,	or,	indeed,	NYC	itself.		
	
The	PCF	hypothesis	is	unconventional	and	the	natural	reaction	of	many	life	scientists	and	
biomedical	experts	will	be	to	doubt	it,	particularly	when	thinking	through	the	mechanistic	
aspects	of,	for	example,	the	ViDe	instantiation	of	the	PCF.	This	study	was	conducted	for	
precisely	that	reason	–	to	help	support	or	refute	the	PCF	hypothesis	by	studying	hard	data.	
Looking	back	over	the	study,	we	see	that	the	findings	in	this	Report	generally	support	the	
PCF	hypothesis,	in	some	cases	very	strongly	and	with	surprising	precision.	Thus,	despite	the	
need	to	continue	to	treat	the	PCF	hypothesis	with	scientific	conservatism,	and	to	devise	
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stronger	and	better	tests	to	support	or	refute	it,	the	hypothesis	has	evidential	support	and	
we	are	justified	in	thinking	how	to	take	the	PCF	hypothesis	forward,	assuming	it	is	correct.		
	
There	is	an	imperative	here	for	action	and	innovation.	We	are	living	in	unprecedented	times	
and	the	pandemic	has	yet	to	abate.	What	then	are	consequences	of	the	PCF	hypothesis?	
	
Humans	innovate,	and	the	PCF	concept	appears	to	offer	many	opportunities	for	innovation	
to	better	protect	communities	from	COVID-19	and	subsequent	infectious	disease	epidemics.	
Early	pre-conditioning,	by	definition	within	the	hypothesis,	provides	buffering	against	
infection.	It	is	increasingly	ineffective	with	age	(or	more	generally	in	those	with	immuno-
compromised	status),	and	so	enhancement	of	the	PCF	(or	enhanced	preventative	measures)	
for	these	individuals	would	be	the	primary	technological	response	required.	This,	of	course,	
requires	some	knowledge	of	the	PCF	itself,	but	a	good	candidate	appears	to	be	ViDe,	and	
this	can	be	experimentally	tested	relatively	quickly.	If	ViDe	is	indeed	supported	by	such	
experiments,	then	the	hypothesised	PCF	might	be	enhanced	through	administration	of	
carefully	optimised	and	tested	ViDe	directly	to	individuals.		
	
Equally	importantly,	to	the	mind	of	the	author,	is	the	wider	long-term	consequence	–	that	
PCF	arises	as	an	emergent	population-level	immunological	response.	In	the	first	Report	
(Newman	2020)	this	was	discussed	in	terms	of	evolution	and	sociobiology.	Given	many	
species	(from	bacteria	to	amoebae	to	insects	to	fish,	birds	and	mammals)	have	evolved	
complex	biological	responses	at	the	population	level,	then	why	would	humans	have	
foregone	such	valuable	evolutionary	innovations?	If	our	species	has	dispensed	with	such	
population-level	responses,	then	our	immune	systems	are	truly	independent,	one	human	
from	another.	Consequently	each	individual’s	immune	system	has	to	“craft	its	own	key	to	
unlock	a	new	pathogen”;	this	appears	to	be	an	enormous	waste	of	effort,	compared	to	
sharing	immunological	keys	and	solutions.	This,	ultimately,	is	the	biological	and	evolutionary	
underpinning	of	the	PCF	idea:	that	the	fitness	advantages	of	sharing	immunological	
information	outweigh	the	fitness	disadvantages	(the	primary	one	of	which	is,	essentially,	
wholly	selfish:	that	one	individual	is	helping	unrelated	individuals	to	survive	infectious	
disease).	The	PCF,	for	example	through	the	ViDe	instantiation,	is	an	early	warning	system.	
Infected	individuals	unwittingly	share	information	with	distant	others	about	a	new	airborne	
pathogen,	in	the	form	of	viral	and	immune	system	fragments	(possibly	even	airborne	
antibodies),	allowing	on	inhalation	some	form	of	immunological	response	that	buffers	those	
individuals	to	the	effects	of	subsequent	infection.		
	
A	fundamental	concept	that	emerges	from	the	PCF	hypothesis	is	that	individuals	are	far	
more	connected	in	terms	of	their	health	than	is	currently	thought.	One	might	call	this	
“community	immunity”.	There	are	strong	positive	feedback	mechanisms	within	PCF	–	the	
immunological	strength	of	a	community	is	far	more	than	the	sum	of	its	parts.		
	
Since	the	first	Report	(Newman	2020)	was	released	the	author	has	received	quite	a	number	
of	news	stories	from	colleagues	chiming	with	the	PCF	hypothesis:	Japan’s	low	levels	of	
COVID-19	mortality,	the	intense	debate	around	bioaerosols	and	live	virus	transport,	the	
apparent	intrinsic	immunity	in	some	individuals	who	have	not	been	infected	with	SARS-CoV-
2	etc.	The	author	hopes	that	this	second	Report,	testing	the	PCF	hypothesis	with	hard	data,	
provides	a	spur	to	the	wider	community	to	further	examine	and	test	the	PCF	idea,	and	to	
take	the	idea	forward	as	a	platform	for	innovation.		
	
If	the	PCF	hypothesis	is	correct,	it	will	change	the	way	we	think	about	infectious	disease,	
emphasising	emergent	and	non-linear	community	protection,	and	thereby	catalysing	
entirely	new	approaches	to	combat	COVID-19	and	other	infectious	diseases.		 	
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Appendix	A:	mathematical	details	
	

A.1	defining	the	NMAP	
	

We	define	a	set	of	𝑀 + 1	age	classes,	indexed	by	𝑚 = 0,⋯ ,𝑀	corresponding	to	age	𝜏	in	the	
range:	0 ≤ 𝜏 < 𝜏!, 𝜏! ≤ 𝜏 < 𝜏!,⋯ , 𝜏!!! ≤ 𝜏 < 𝜏! , 𝜏! ≤ 𝜏 .	
	
For	each	State	we	define	the	number	of	individuals	in	class	𝑚	by	𝑛!,	such	that		
	

𝑛!

!

!!!

= 𝑁 ,	

	

where	𝑁	is	the	total	number	of	individuals	in	that	State.	
	
Likewise,	for	each	State	we	define	the	number	of	individual	COVID-19	deaths	in	class	𝑚	by	
𝑘!,	such	that	
	

𝑘!

!

!!!

= 𝐾 ,	

	

where	𝐾	is	the	total	number	of	COVID-19	deaths	in	that	State.	
	
The	COVID-19	mortality	rate	for	a	given	State	within	a	particular	age	class	is	given	by		
	

𝜇! =  𝑘! 𝑛! .	
	

These	values	across	age	groups	constitute	what	we	refer	to	in	the	main	text	as	the	mortality	
age	profile	(MAP).	We	denote	the	sum	of	these	values	by	𝑆,	namely	
	

𝑆 = 𝜇!

!

!!!

  .	

	

Finally,	we	define	the	normalised	mortality	age	profile	(NMAP)	for	a	given	State	by	the	set	of	
values	
	

NMAP! = 𝜇!
𝑆  ,	

	

from	which	it	is	seen	that	the	NMAP	for	each	State	is	normalised	to	unity.	
	
	
A.2	defining	the	immune	decline	and	barrier	functions	
	

In	the	main	text	we	refer	to	the	exponential	decay	of	the	thymus,	and	define	the	immune	
decline	function	(IDF)	and	its	inverse,	the	immune	barrier	function	(IBF).	Representing	age	by	
the	symbol	𝜏,	these	functions	have	the	explicit	mathematical	expressions:	
	

IDF = exp −𝛼𝜏   ,	
	

IBF =
1
IDF

= exp 𝛼𝜏   .	
	
For	age	𝜏	measured	in	units	of	decades,	the	parameter	𝛼	has	the	approximate	value	0.44	
/decade	(Sottini	et	al.	2014,	Palmer	et	al.	2018).		 	



©	SOLARAVUS,	Cupar,	Fife,	UK																												www.solaravus.com	
	

23	

References	
	

AMS	2020	Glossary	of	Meterology	American	Meterological	Society	(glossary.ametsoc.org)	
Bar-On	YM,	Flamholz	A,	Phillips	R,	Milo	R	2020	SARS-CoV-2	(COVID-19)	by	the	numbers	eLife	9	357309	
Davies	NG	et	al.	2020	Age-dependent	effects	in	the	transmission	and	control	of	COVID-19	epidemics		

Nat.	Med.	doi:10.1038/s41591-020-0962-9		
Donnelly	R,	Palmer	S	2020	Risk	of	COVID-19	hospitalisation	rises	exponentially	with	age,	inversely		

proportional	to	T-cell	production	(preprint)	
Dowd	JB	et	al.	2020	Demographic	science	aids	in	understanding	the	spread	and	fatality	rates	of	COVID-19	

PNAS	117	9696-9698	
Everitt	BS,	Skrondal	A	2010	The	Cambridge	dictionary	of	statistics	(C.U.P.,	Cambridge)	
Guerra-Silveira	F,	Abad-Franch	F	2013	Sex	bias	in	infectious	disease	epidemiology:	patterns	and	processes		

PLOS	ONE	8	e62390	
Gui	J,	Mustachio	LM,	Su	D-M,	Craig	RW	2012	Thymus	size	and	age-related	thymic	involution:	early		

programming,	sexual	dimorphism,	progenitors	and	stroma	Aging	&	Dis.	3	280-290			
Loomba	RS	et	al.	2020	Disparities	in	case	frequency	and	mortality	of	coronavirus	disease	2019	(COVID-19)		

among	various	states	in	the	United	States	(preprint)	doi:10.1101/2020.07.28.20163931	
Mollalo	A,	Vahedib	B,	Riveraa	KM	2020	GIS-based	spatial	modeling	of	COVID-19	incidence	rate	in	the		

continental	United	States	Sci.	Total	Env.	728	138884		
Montecino-Rodriguez	E,	Berent-Maoz	B,	Dorshkind,	K	2013	Causes,	consequences,	and	reversal	of		

immune	system	aging	J.	Clin.	Invest.	123	958–965	
Newman	TJ	2020	Epidemic	suppression	via	an	emergent	pre-conditioning	field	Solaravus	Tech.	Rep.	003		

doi:	10.5281/zenodo.3937508		
Palmer	S,	Albergante	L,	Blackburn	CC,	Newman	TJ	2018	Thymic	involution	and	rising	disease	incidence	with		

age	PNAS	115	1883-1888	
Promislow	DEL	2020	A	geroscience	perspective	on	COVID-19	mortality	J.	Ger.	doi:10.1093/gerona/glaa094	
Richardson	S	et	al.	2020	Presenting	characteristics,	comorbidities,	and	outcomes	among	5700	patients		

hospitalized	with	COVID-19	in	the	New	York	City	area	JAMA	323	2052–2059	
Rousseau	M-A	et	al.	2020	Understanding	the	thymus	with	applications	to	COVID-19	pathophysiology		

and	susceptibility	with	potential	therapeutics	(ResearchGate	preprint)	
Sottini	A	et	al.	2014	Simultaneous	quantification	of	T-cell	receptor	excision	circles	(TRECs)	and	K-deleting		

recombination	excision	circles	(KRECs)	by	real-time	PCR	JoVE	J.	Vis.	Exp.	e52184	
Texier	G	et	al.	2016	Outbreak	definition	by	change	point	analysis:	a	tool	for	public	health	decision?		

BMC	Med.	Inform.	&	Dec.	Mak.	doi:10.1186/s12911-016-0271-x	
US	DHHS	2012	Principles	of	epidemiology	in	public	health	practice,	3rd	ed.	(CDC,	US	DHHS)	
Zhang	CH,	Schwartz	GG	2020	Spatial	disparities	in	coronavirus	incidence	and	mortality	in	the	United	States:		

an	ecological	analysis	as	of	May	2020	J	Rural	Health	36	433-445	
Zhu	N	et	al.	2020	A	novel	coronavirus	from	patients	with	pneumonia	in	China,	2019	New	Eng.	J.	Med.	382		

727-733	
	

Data	Sources	
	

www.cdc.gov	
[CDC	“Provisional	COVID-19	death	counts	by	sex,	age	and	state”,	dataset	up	to	and	including	July	4th	2020]	
data.census.gov/cedsci	
[US	Census	Bureau	2018	data	for	underlying	demographics	(age	and	sex)	of	each	state]	
www.worldometers.info/coronavirus		
[Internationally	sourced	COVID-19	datasets	(incidence	and	mortality),	source	for	US25	epidemic	start	dates]	
www.americashealthrankings.org	
[United	Health	Foundation	2018	data	on	health	across	the	United	States]	
www.bccdc.ca/health-info/diseases-conditions/covid-19/data	
[COVID	data	for	British	Columbia:	BC_Surveillance_Summary_July_16_2020.pdf]	
files.ontario.ca/moh-covid-19-report-en-2020-07-20.pdf	
[Ontario	Agency	for	Health	Protection	and	Promotion;	January	15,	2020	to	July	19,	2020]	
www.quebec.ca/en/health/health-issues/a-z/2019-coronavirus	
[COVID	data	for	Quebec:	situation-coronavirus-in-quebec/#c63035]	
www12.statcan.gc.ca	
[Demographic	data	for	Canadian	Provinces	from	the	2016	census]	
www.weatheronline.co.uk	
[Climate	record	data:	net	wind	direction	March-April	2020	for	north-eastern	US]	 	



©	SOLARAVUS,	Cupar,	Fife,	UK																												www.solaravus.com	
	

24	

Acknowledgements	
	

The	author	is	grateful	to	Ruairi	Donnelly	and	Sam	Palmer	for	sharing	their	analysis	on	
immune	system	dependence	of	COVID-19	hospitalisations	prior	to	completion	of	their	
paper.	The	author	is	grateful	to	Janis	Antonovics,	Robert	Austin,	Myles	Byrne,	Karl	Friston,	
James	Le	Fanu,	John	Golden,	Josh	LaBaer,	David	Liao,	Stuart	Lyndsey,	Irwin	McLean,	Ron	
Milo,	Denis	Noble,	James	O’Dwyer,	Rupert	Sheldrake,	Karol	Sikora,	and	Bernhard	Strauss	for	
feedback	on	the	PCF	hypothesis.	The	author	sincerely	thanks	Eva	Lundell	for	assistance	with	
data	gathering	and	checking,	and	for	a	careful	reading	of	the	manuscript,	Luca	Albergante	
for	advice	on	statistical	analysis,	and	Rupert	Sheldrake	and	Greg	Vogel	for	support	in	
bringing	the	PCF	hypothesis	to	a	wider	audience.	
	
Short	biography	
	

Thea	Newman	has	thirty	years’	experience	in	scientific	research	and	has	held	academic	
positions	at	the	University	of	Virginia	(2000-2002),	Arizona	State	University	(2002-2010)	and	
the	University	of	Dundee	(2011-2017).	Her	training	is	originally	in	theoretical	physics.	Since	
2000	she	has	pursued	theoretical	biophysics	research	across	a	range	of	biological	areas:	
ecology,	developmental	biology,	molecular	biology	and	most	recently	cancer.	Since	2018	she	
has	directed	SOLARAVUS,	working	as	an	independent	educator	and	researcher.		
	
Thea	Newman	is	not	an	expert	per	se	in	immunology,	epidemiology	or	atmospheric	science.	
This	technical	report	is	offered	to	the	public	and	the	scientific	community	as	both	an	analysis	
of	spatio-temporal	correlations	in	US	COVID-19	data	and	as	a	statistical	test	of	the	PCF	
hypothesis.	In	sum,	it	is	hoped	to	provide	utility	to	all	those	tasked	with	better	
understanding	and	managing	the	COVID-19	pandemic	and	subsequent	epidemics.	
	
	
List	of	acronyms	
	

We	use	the	following	acronyms	as	a	short-hand	throughout	the	article.	In	scientific	papers	it	
is	conventional	to	use	the	unabbreviated	form	only	once,	thereafter	only	using	the	acronym.	
We	do	not	slavishly	follow	that	practice	here	as	this	paper	is	written	for	both	the	scientific	
community	and	the	general	public.	Thus,	we	occasionally	use	unabbreviated	forms	if	we	feel	
it	improves	clarity	(e.g.	in	figure	captions,	section	headings	and	discursive	text).	
	

CDC	 	 US	Centers	for	Disease	Control	and	Prevention	
COVID-19	 coronavirus	disease	2019,	caused	by	the	SARS-CoV-2	virus	
IBF	 	 immune	barrier	function	(the	inverse	of	the	IDF)	
IDF	 	 immune	decline	function	(parameterised	by	the	rate	α	=0.44	/decade)	
MAP	 	 mortality	age	profile	
NI	 	 NMAP	index	
NMAP	 	 normalised	mortality	age	profile	
PCF	 	 pre-conditioning	field	
PEC	 	 pre-existing	conditions	
SIR	 	 susceptible-infected-recovered	(epidemiology	framework)	
UHF	 	 United	Health	Foundation	
US	 	 United	States	
US25	 	 the	set	of	25	worst-affected	States	within	the	US	as	of	July	4th	2020	
ViDe	 	 viral	detritus	
WHO	 	 World	Health	Organisation	



©	SOLARAVUS,	Cupar,	Fife,	UK																												www.solaravus.com	
	

25	

List	of	figures	and	data	tables	
	
Figures:	
	
Figure	1:	NMAPs	for	selected	States	and	fitting	of	exponentials	to	determine	NIs		
	
Figure	2:	Schematic	figure	of	spatial	pre-conditioning	within	the	PCF	hypothesis	
	
Figure	3:	NIs	for	US25	versus	epidemic	start	date	(definitions	1	and	2)	for	a)	the	total		

			population	of	each	State,	and	b)	male	and	c)	female	sub-populations	
	
Figure	4:	Schematic	figure	illustrating	inter-regional	effects	of	the	PCF	
	
Figure	5:	Schematic	figure	of	north-eastern	States	showing	NIs	relative	to	geography	
	
Figure	6:	NMAPs	for	MA	and	NYC	a)	without	and	b)	with	factor	of	immune	barrier	function,	
	 			and	MA	and	NY	State	c)	without	and	d)	with	factor	of	immune	barrier	function	
	
Figure	7:	Schematic	figure	of	US/S	Canada	west	coast	showing	NIs	relative	to	geography	
	
	
	
Data	tables:	
	
Table	1:	General	epidemic	data	and	UHF	health	indices	for	US25	
	
Table	2:	Demographic	and	COVID-19	mortality	data	and	calculated	NMAPS	by	gender	and		

	age	class	for	US25	
	
Table	3:	NIs	and	associated	errors	for	US25	
	
Table	4:	Demographic	and	COVID-19	mortality	data	and	calculated	NMAPs	by	gender	and		

	age	class	for	a)	five	additional	States	and	the	District	of	Columbia,	and	b)	the	three		
		 	most	populous	Canadian	Provinces	
	
Table	5:	NIs	and	associated	errors	for	the	additional	regions	outside	of	US25	
	
	 	



©	SOLARAVUS,	Cupar,	Fife,	UK																												www.solaravus.com	
	

26	

Figures	

	
	
Figure	1a:	Upper	panel	shows	MAPs	for	the	States	of	NY,	IN	and	OH.	The	curve	for	NY	is	
significantly	higher	due	to	the	high	mortality	rates	in	that	State.	Lower	panel	shows	NMAPs	
for	the	same	three	States.	Note	that	the	NMAPs	for	OH	and	IN	are	almost	identical,	meaning	
their	NMAP	indices	will	be	very	close	(cf.	Table	3).	The	NMAP	for	NY	is	flatter	by	comparison.	
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Figure	1b:	Upper	panel	shows	NMAPs	for	the	States	of	NY	and	OH	on	a	log-linear	scale.	The	
straightness	of	the	curves	indicates	that	the	NMAPs	are	well	approximated	to	exponentials.	
The	additional	lines	are	best	fits	to	exponential	curves,	the	slopes	of	which	provide	the	
NMAP	indices	(see	Table	3).	Lower	panel	shows	the	OH	NMAP	along	with	its	exponential	fit	
on	a	linear	scale	to	stress	the	excellence	of	fit	to	an	exponential	function.	 	
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Figure	1c:	NMAPs	for	the	States	of	AZ	(upper	panel)	and	AL	(lower	panel)	along	with	best	fits	
to	an	exponential	function.	The	poorness	of	these	fits	is	reflected	in	the	large	errors	in	the	
value	of	the	NMAP	indices,	greater	than	the	cut-off	of	5%	(cf.	Table	3).	The	NMAPs	for	these	
two	States	are	not	well-fitted	to	a	pure	exponential	function	and	cannot	be	described	by	a	
single	parameter.	
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Figure	2:	Schematic	of	the	spatial	effects	of	the	PCF.	In	regions	directly	adjacent	to	the	
epicentre,	local	contact	infection	will	dominate.	Within	the	PCF	hypothesis,	more	distant	
regions	will	experience	immunological	pre-conditioning	prior	to	subsequent	infection	and	
experience	a	milder	form	of	the	epidemic.	Very	distant	regions	are	likely	to	be	seeded	with	
new	epidemics	due	to	long-distance	air	travel	prior	to	significant	beneficial	effects	of	the	
PCF.	In	interpreting	this	figure,	it	is	helpful	to	think	of	the	viral	detritus	(ViDe)	instantiation	of	
the	PCF.	(This	figure	originally	appeared	as	Figure	2	in	Solaravus	Technical	Report	003,	
Newman	2020.)	
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Figure	3a:	NMAP	indices	plotted	against	start	dates	of	epidemic	according	to	definitions	1	
(upper	panel)	and	2	(lower	panel)	for	US25	(excluding	AL	and	AZ	whose	indices	have	errors	
in	excess	of	5%,	cf.	Table	3).	Colours	green,	blue,	purple	correspond	to	health	indices	in	the	
categories	H,	M,	L	respectively	(cf.	Table	1).	Best	fit	straight	lines	are	shown	in	light	brown.	
The	correlation	coefficient	and	p-value	are	boxed.	
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Figure	3b:	NMAP	indices	for	male	sub-populations,	plotted	against	start	dates	of	epidemic	
according	to	definitions	1	(upper	panel)	and	2	(lower	panel)	for	US25	(excluding	AL,	AZ,	CO	
and	NC	whose	indices	have	errors	in	excess	of	5%,	cf.	Table	3).	Colours	green,	blue,	purple	
correspond	to	health	indices	in	the	categories	H,	M,	L	respectively	(cf.	Table	1).	Best	fit	
straight	lines	are	shown	in	light	brown.	The	correlation	coefficient	and	p-value	are	boxed.	
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Figure	3c:	NMAP	indices	for	female	sub-populations,	plotted	against	start	dates	of	epidemic	
according	to	definitions	1	(upper	panel)	and	2	(lower	panel)	for	US25	(excluding	AL,	AZ,	MO,	
MS,	RI	and	WA	whose	indices	have	errors	in	excess	of	5%,	cf.	Table	3).	Colours	green,	blue,	
purple	correspond	to	health	indices	in	the	categories	H,	M,	L	respectively	(cf.	Table	1).	Best	
fit	straight	lines	are	shown	in	light	brown.	The	correlation	coefficient	and	p-value	are	boxed.	
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Figure	4:	Schematic	of	the	inter-regional	dynamics	of	the	PCF	within	the	SIR	framework	of	
epidemiology.	(Intra-regional	dynamics	are	discussed	at	length	in	Newman	2020).	The	blue	
arrows	represent	the	PCF	dynamics,	spreading	to	Region	2	from	Region	1,	whilst	the	purple	
arrow	represents	mobility	of	infected	individuals,	spreading	the	infection	from	Region	1	to	
Region	2.	The	red	arrow	represents	infection	of	pre-conditioned	individuals	in	Region	2.	This	
creates	an	additional	step	in	the	infection	dynamics	in	Region	2	that	was	absent	in	Region	1.	
This	new	step	involves	an	additional	immunological	barrier	for	the	virus	to	overcome,	
described	in	the	main	text	by	the	immune	barrier	function	(IBF).	It	is	hypothesised	to	be	
responsible	for	the	sharp	differences	in	NMAP	indices	between	“earlier	States”	and	“later	
States”:	those	individuals	(typically	the	elderly)	with	weaker	immune	systems	will	experience	
less	protection	from	pre-conditioning	and	will	be	disproportionately	infected	(relative	to	
Region	1),	thus	steeping	the	NMAP	and	increasing	the	NMAP	index.	For	those	individuals	in	
which	the	infection	fails	to	overcome	the	IBF,	they	will	have	effectively	achieved	a	form	of	
immunity,	which	we	term	“intermediate”,	as	it	is	unlikely	to	be	permanent	(cf.	discussion	of	
the	additional	process	of	reversion	in	Newman	2020).	
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Figure	5:	Schematic	of	the	north-eastern	US	States	(and	the	District	of	Columbia)	with	New	
York	City	(NYC)	at	the	centre.	For	each	State	the	NI	is	given.	Note,	the	NI	for	NY	State	as	a	
whole	(including	NYC)	is	0.83	(cf.	Table	3)	whilst	(shown	in	yellow	font)	the	NI	for	NYC	is	0.78	
and	the	NI	for	NY	State	excluding	NYC	is	0.95	(cf.	Table	5).	Those	NIs	in	parentheses	are	
given	for	completeness,	but	are	less	statistically	robust	(cf.	Tables	3	and	5).	NIs	cannot	be	
robustly	calculated	for	West	Virginia,	Vermont	and	Maine	due	to	the	relatively	low	number	
of	deaths	in	those	States.	Note	the	strong	spatial	correlations	of	NIs	between	those	States	
east	of	NYC	(values	around	1.2)	and	separately	between	those	States	south-west	and	west	of	
NYC	(values	around	1.0).		
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Figure	6a:	NMAPs	for	MA	and	NYC;	linear	scale	(upper	panel)	and	log-linear	scale	(lower	
panel)	 	
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Figure	6b:	NMAPs	comparing	MA	to	the	NYC	data	multiplied	by	the	immune	barrier	function	
(IBF):	exp 𝛼 × age class where 𝛼 = 0.44/decade	(this	product	is	subsequently	normalised	
to	ensure	unit	area	beneath	the	curve	as	with	all	NMAPs);	linear	scale	(upper	panel)	and	log-
linear	scale	(lower	panel).	Note	the	high	degree	of	overlap,	requiring	open	circles	for	the	
NYC	data	to	allow	the	MA	data	to	be	visible.	

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1  1.5  2  2.5  3  3.5  4  4.5  545-54	 55-64	 65-74	 75-84	 ≥85	
age	class	

0.6	

0.0	

0.2	

0.4	

NMAP		

0.8	

NYC	×	(immune	barrier	funcAon)	

MA	

 0.001

 0.01

 0.1

 1

 1  1.5  2  2.5  3  3.5  4  4.5  545-54	 55-64	 65-74	 75-84	 ≥85	
age	class	

0.1	

0.001	

0.01	

log	NMAP		

1	

NYC	×	(immune	barrier	funcBon)	

MA	



©	SOLARAVUS,	Cupar,	Fife,	UK																												www.solaravus.com	
	

37	

	
Figure	6c:	NMAPs	for	MA	and	NY	State;	linear	scale	(upper	panel)	and	log-linear	scale	(lower	
panel)	 	
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Figure	6d:	NMAPs	comparing	MA	to	the	NY	State	data	multiplied	by	the	immune	barrier	
function	(IBF):	exp 𝛼 × age class where 𝛼 = 0.44/decade	(this	product	is	subsequently	
normalised	to	ensure	unit	area	beneath	the	curve	as	with	all	NMAPs);	linear	scale	(upper	
panel)	and	log-linear	scale	(lower	panel).	Note	the	remarkable	degree	of	overlap,	requiring	
open	circles	for	the	NY	State	data	to	allow	the	MA	data	to	be	visible.	
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Figure	7:	Schematic	of	the	west	coast	of	the	US	and	southern	Canada.	For	each	
State/Province	the	NMAP	index	is	given.	The	NMAP	index	for	Oregon	is	in	parentheses	as	it	
is	less	statistically	robust	due	to	the	relatively	low	number	of	deaths	in	that	State	(cf.	Table	
5).	Note	the	trend	of	increasing	NMAP	indices	from	south	to	north.	



©	SOLARAVUS,	Cupar,	Fife,	UK																												www.solaravus.com	
	

40	

Data	tables	
	
	
State	 Abb’n	 Epidemic	start		

(1000	cases)	
Epidemic	start		
(50	deaths)	

No.	of	deaths	
(as	of	07/04/20)	

Health	index	
(L,	M,	H)	

Alabama	 AL	 04/01	 04/06	 		0,935	 L				(–0.838)	
Arizona	 AZ	 03/30	 04/04	 		1,259	 M		(–0.105)	
California	 CA	 03/19	 03/24	 		5,172	 H			(–0.431)	
Colorado	 CO	 03/25	 03/30	 		1,520	 H			(–0.588)	
Connecticut	 CT	 03/26	 03/31	 		3,473	 H			(–0.799)	
Florida	 FL	 03/22	 03/28	 		2,969	 M		(–0.087)	
Georgia	 GA	 03/24	 03/26	 		2,054	 L				(–0.394)	
Illinois	 IL	 03/22	 03/29	 		5,973	 M		(–0.060)	
Indiana	 IN	 03/28	 04/01	 		2,375	 L				(–0.432)	
Louisiana	 LA	 03/23	 03/25	 		2,613	 L				(–1.021)	
Maryland	 MD	 03/29	 04/04	 		3,220	 M		(–0.306)	
Massachusetts	 MA	 03/24	 03/30	 		7,217	 H			(–0.866)	
Michigan	 MI	 03/22	 03/26	 		5,217	 M		(–0.194)	
Minnesota	 MN	 04/07	 04/09	 		1,309	 H			(–0.665)	
Mississippi	 MS	 04/01	 04/06	 		0,906	 L				(–1.010)	
Missouri	 MO	 03/30	 04/06	 		0,855	 M		(–0.345)	
New	Jersey	 NJ	 03/21	 03/24	 12,843	 H			(–0.460)	
New	York	 NY	 03/17	 03/19	 29,530	 H			(–0.476)	
North	Carolina	 NC	 03/28	 04/07	 		0,859	 M		(–0.191)	
Ohio	 OH	 03/27	 03/31	 		2,256	 L				(–0.424)	
Pennsylvania	 PA	 03/25	 03/30	 		6,600	 M		(–0.014)	
Rhode	Island	 RI	 04/06	 04/11	 		0,822	 H			(–0.382)	
Texas	 TX	 03/24	 03/31	 		2,221	 M		(–0.286)	
Virginia	 VA	 03/30	 04/04	 		1,723	 M		(–0.305)	
Washington	 WA	 03/17	 03/17	 		1,107	 H			(–0.584)	
	
Table	1:	Data	for	the	25	worst-affected	States	(in	terms	of	total	mortality	from	COVID-19)	as	
of	04/07/20:	starting	dates	(MM/DD/2020)	of	epidemic	for	each	State,	measured	by	1000	
cases	(column	3)	or	by	50	deaths	(column	4),	total	number	of	COVID-19	deaths	as	of	
04/07/20,	and	health	categories	of	low	(<	–0.35),	medium	(between	–0.35	and	+0.35)	and	
high	(>	+0.35),	with	the	associated	indices	from	the	United	Health	Foundation	dataset	(cf.	
subsection	2.5	for	details).		
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Alabama	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 1,395,626	 302,901	 309,774	 227,090	 106,746	 27,134	
pop’n	(F)	 1,384,237	 323,272	 342,398	 266,306	 144,279	 58,108	
pop’n	(M/F)	 2,779,863	 626,173	 652,172	 493,396	 251,025	 85,242	
deaths	(M)	 13	 43	 		69	 136	 133	 106	
deaths	(F)	 16	 27	 		57	 101	 103	 131	
deaths	(M/F)	 29	 70	 126	 237	 236	 237	
NMAP	(M)	 1.52×10-3	 2.32×10-2	 3.64×10-2	 9.78×10-2	 0.203	 0.638	
NMAP	(F)	 3.20×10-3	 2.31×10-2	 4.61×10-2	 0.105	 0.198	 0.625	
NMAP	(M/F)	 2.31×10-3	 2.48×10-2	 4.28×10-2	 0.106	 0.208	 0.616	
	
	
	
	
Arizona	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 2,149,919	 422,450	 413,360	 340,427	 186,987	 		51,986	
pop’n	(F)	 2,043,369	 430,012	 453,433	 387,529	 211,421	 		80,753	
pop’n	(M/F)	 4,193,288	 852,462	 866,793	 727,956	 398,408	 132,739	
deaths	(M)	 41	 60	 101	 121	 200	 175	
deaths	(F)	 20	 30	 		61	 103	 150	 197	
deaths	(M/F)	 61	 90	 162	 224	 350	 372	
NMAP	(M)	 3.67×10-3	 2.73×10-2	 4.70×10-2	 6.84×10-2	 0.206	 0.648	
NMAP	(F)	 2.70×10-3	 1.92×10-2	 3.71×10-2	 7.32×10-2	 0.196	 0.672	
NMAP	(M/F)	 3.39×10-3	 2.46×10-2	 4.35×10-2	 7.16×10-2	 0.205	 0.652	
	
	
	
California	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 12,302,593	 2,522,257	 2,327,186	 1,530,227	 		,719,421	 271,869	
pop’n	(F)	 11,737,663	 2,545,769	 2,454,240	 1,756,234	 		,931,875	 457,711	
pop’n	(M/F)	 24,040,256	 5,068,026	 4,781,426	 3,286,461	 1,651,296	 729,580	
deaths	(M)	 136	 237	 467	 		,699	 		,737	 		,674	
deaths	(F)	 		43	 		86	 190	 		,372	 		,551	 		,980	
deaths	(M/F)	 179	 323	 657	 1,071	 1,288	 1,654	
NMAP	(M)	 2.59×10-3	 2.20×10-2	 4.70×10-2	 0.107	 0.240	 0.581	
NMAP	(F)	 1.20×10-3	 1.10×10-2	 2.53×10-2	 6.92×10-2	 0.193	 0.700	
NMAP	(M/F)	 2.08×10-3	 1.78×10-2	 3.84×10-2	 9.10×10-2	 0.218	 0.633	
	
	
	
Table	2:	demographic	and	COVID-19	mortality	data	by	gender	and	age	class	for	each	State	in	
US25,	along	with	the	resulting	NMAPs,	calculated	according	to	the	method	provided	in	
Appendix	A.1.	A	dash	indicates	restricted	data	arising	from	the	CDC	privacy	policy	on	low	
numbers	of	COVID	deaths	(<10)	in	a	given	age	class.	
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Colorado	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 1,792,237	 356,963	 346,233	 239,923	 		97,665	 31,740	
pop’n	(F)	 1,674,084	 353,255	 364,937	 262,495	 120,366	 55,666	
pop’n	(M/F)	 3,466,321	 710,218	 711,170	 502,418	 218,031	 87,406	
deaths	(M)	 24	 50	 104	 183	 240	 249	
deaths	(F)	 10	 16	 		36	 111	 179	 318	
deaths	(M/F)	 34	 66	 140	 294	 419	 567	
NMAP	(M)	 1.16×10-3	 1.22×10-2	 2.61×10-2	 6.62×10-2	 0.213	 0.681	
NMAP	(F)	 7.69×10-4	 5.83×10-3	 1.27×10-2	 5.44×10-2	 0.191	 0.735	
NMAP	(M/F)	 1.06×10-3	 1.00×10-2	 2.12×10-2	 6.30×10-2	 0.207	 0.698	
	
	
	
Connecticut	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 		,987,301	 238,346	 247,014	 160,264	 		78,283	 29,325	
pop’n	(F)	 		,964,432	 256,296	 266,129	 182,796	 104,108	 58,371	
pop’n	(M/F)	 1,951,733	 494,642	 513,143	 343,060	 182,391	 87,696	
deaths	(M)	 25	 55	 181	 363	 460	 		,593	
deaths	(F)	 13	 19	 95	 226	 451	 		,992	
deaths	(M/F)	 38	 74	 276	 589	 911	 1,585	
NMAP	(M)	 8.63×10-4	 7.86×10-3	 2.50×10-2	 7.72×10-2	 0.200	 0.689	
NMAP	(F)	 5.86×10-4	 3.22×10-3	 1.55×10-2	 5.37×10-2	 0.188	 0.739	
NMAP	(M/F)	 7.64×10-4	 5.87×10-3	 2.11×10-2	 6.73×10-2	 0.196	 0.709	
	
	
	
Florida	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 		5,748,075	 1,342,853	 1,348,193	 1,109,704	 		,638,569	 217,282	
pop’n	(F)	 		5,594,344	 1,399,115	 1,507,961	 1,294,530	 		,754,981	 343,718	
pop’n	(M/F)	 11,342,419	 2,741,968	 2,856,154	 2,404,234	 1,393,550	 561,000	
deaths	(M)	 50	 		85	 192	 379	 502	 		,419	
deaths	(F)	 22	 		33	 		85	 248	 362	 		,592	
deaths	(M/F)	 72	 118	 277	 627	 864	 1,011	
NMAP	(M)	 2.66×10-3	 1.94×10-2	 4.35×10-2	 0.104	 0.240	 0.590	
NMAP	(F)	 1.59×10-3	 9.52×10-3	 2.28×10-2	 7.73×10-2	 0.194	 0.695	
NMAP	(M/F)	 2.24×10-3	 1.52×10-2	 3.43×10-2	 9.22×10-2	 0.219	 0.637	
	
	
	
Table	2	(cont):	demographic	and	COVID-19	mortality	data	by	gender	and	age	class	for	each	
State	in	US25,	along	with	the	resulting	NMAPs,	calculated	according	to	the	method	provided	
in	Appendix	A.1.	A	dash	indicates	restricted	data	arising	from	the	CDC	privacy	policy	on	low	
numbers	of	COVID	deaths	(<10)	in	a	given	age	class.	
	 	



©	SOLARAVUS,	Cupar,	Fife,	UK																												www.solaravus.com	
	

43	

Georgia	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 3,195,777	 		,681,648	 		,609,190	 407,128	 178,755	 		47,792	
pop’n	(F)	 3,188,813	 		,714,682	 		,672,937	 489,820	 237,925	 		95,008	
pop’n	(M/F)	 6,384,590	 1,396,330	 1,282,127	 896,948	 416,680	 142,800	
deaths	(M)	 31	 		72	 166	 303	 297	 195	
deaths	(F)	 27	 		49	 105	 196	 284	 329	
deaths	(M/F)	 58	 121	 271	 499	 581	 524	
NMAP	(M)	 1.41×10-3	 1.54×10-2	 3.96×10-2	 0.108	 0.242	 0.594	
NMAP	(F)	 1.60×10-3	 1.30×10-2	 2.95×10-2	 7.56×10-2	 0.226	 0.655	
NMAP	(M/F)	 1.53×10-3	 1.46×10-2	 3.57×10-2	 9.39×10-2	 0.235	 0.619	
	
	
	
Illinois	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 3,778,259	 		,807,510	 		,810,557	 		,533,438	 249,685	 		86,613	
pop’n	(F)	 3,666,352	 		,828,544	 		,859,310	 		,609,891	 337,966	 172,955	
pop’n	(M/F)	 7,444,611	 1,636,054	 1,669,867	 1,143,329	 587,651	 259,568	
deaths	(M)	 151	 253	 509	 		,832	 		,843	 		,709	
deaths	(F)	 		59	 		96	 249	 		,463	 		,656	 1,153	
deaths	(M/F)	 210	 349	 758	 1,295	 1,499	 1,862	
NMAP	(M)	 2.83×10-3	 2.22×10-2	 4.45×10-2	 0.111	 0.239	 0.580	
NMAP	(F)	 1.64×10-3	 1.18×10-2	 2.96×10-2	 7.76×10-2	 0.198	 0.681	
NMAP	(M/F)	 2.44×10-3	 1.85×10-2	 3.93×10-2	 9.80×10-2	 0.221	 0.621	
	
	
	
Indiana	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 1,991,702	 415,745	 425,989	 287,314	 130,823	 		44,400	
pop’n	(F)	 1,933,002	 426,005	 448,289	 326,385	 180,047	 		82,177	
pop’n	(M/F)	 3,924,704	 841,750	 874,278	 613,699	 310,870	 126,577	
deaths	(M)	 21	 43	 145	 314	 350	 330	
deaths	(F)	 16	 27	 		87	 194	 340	 508	
deaths	(M/F)	 37	 70	 232	 508	 690	 838	
NMAP	(M)	 9.05×10-4	 8.87×10-3	 2.92×10-2	 9.38×10-2	 0.230	 0.638	
NMAP	(F)	 9.27×10-4	 7.10×10-3	 2.17×10-2	 6.66×10-2	 0.211	 0.692	
NMAP	(M/F)	 9.40×10-4	 8.29×10-3	 2.65×10-2	 8.26×10-2	 0.221	 0.660	
	
	
	
Table	2	(cont):	demographic	and	COVID-19	mortality	data	by	gender	and	age	class	for	each	
State	in	US25,	along	with	the	resulting	NMAPs,	calculated	according	to	the	method	provided	
in	Appendix	A.1.	A	dash	indicates	restricted	data	arising	from	the	CDC	privacy	policy	on	low	
numbers	of	COVID	deaths	(<10)	in	a	given	age	class.	
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Louisiana	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 1,396,417	 276,273	 288,341	 202,164	 		87,647	 25,688	
pop’n	(F)	 1,372,797	 291,040	 314,500	 232,733	 124,222	 48,156	
pop’n	(M/F)	 2,769,214	 567,313	 602,841	 434,897	 211,869	 73,844	
deaths	(M)	 47	 		96	 212	 356	 413	 268	
deaths	(F)	 43	 		49	 151	 223	 348	 407	
deaths	(M/F)	 90	 145	 363	 579	 761	 675	
NMAP	(M)	 1.87×10-3	 1.93×10-2	 4.08×10-2	 9.77×10-2	 0.261	 0.579	
NMAP	(F)	 2.43×10-3	 1.31×10-2	 3.72×10-2	 7.43×10-2	 0.217	 0.656	
NMAP	(M/F)	 2.17×10-3	 1.71×10-2	 4.03×10-2	 8.90×10-2	 0.240	 0.611	
	
	
	
Maryland	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 1,746,574	 396,969	 385,328	 247,743	 115,401	 		38,335	
pop’n	(F)	 1,730,410	 425,771	 426,625	 298,699	 160,683	 		70,180	
pop’n	(M/F)	 3,476,984	 822,740	 811,953	 546,442	 276,084	 108,515	
deaths	(M)	 74	 		91	 251	 335	 483	 		,407	
deaths	(F)	 25	 		52	 137	 283	 421	 		,661	
deaths	(M/F)	 99	 143	 388	 618	 904	 1,068	
NMAP	(M)	 2.48×10-3	 1.34×10-2	 3.81×10-2	 7.92×10-2	 0.245	 0.622	
NMAP	(F)	 1.07×10-3	 9.08×10-3	 2.39×10-2	 7.05×10-2	 0.195	 0.701	
NMAP	(M/F)	 1.91×10-3	 1.16×10-2	 3.20×10-2	 7.58×10-2	 0.219	 0.659	
	
	
	
Massachusetts	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 1,956,847	 448,551	 452,699	 303,285	 139,355	 		50,150	
pop’n	(F)	 1,945,046	 473,000	 488,465	 353,261	 187,911	 103,579	
pop’n	(M/F)	 3,901,893	 921,551	 941,164	 656,546	 327,266	 153,729	
deaths	(M)	 40	 		80	 307	 		,662	 1,056	 1,256	
deaths	(F)	 20	 		58	 176	 		,434	 		,945	 2,183	
deaths	(M/F)	 60	 138	 483	 1,096	 2,001	 3,439	
NMAP	(M)	 5.73×10-4	 5.00×10-3	 1.90×10-2	 6.12×10-2	 0.212	 0.702	
NMAP	(F)	 3.70×10-4	 4.41×10-3	 1.29×10-2	 4.42×10-2	 0.181	 0.757	
NMAP	(M/F)	 4.99×10-4	 4.86×10-3	 1.66×10-2	 5.41×10-2	 0.198	 0.726	
	
	
	
Table	2	(cont):	demographic	and	COVID-19	mortality	data	by	gender	and	age	class	for	each	
State	in	US25,	along	with	the	resulting	NMAPs,	calculated	according	to	the	method	provided	
in	Appendix	A.1.	A	dash	indicates	restricted	data	arising	from	the	CDC	privacy	policy	on	low	
numbers	of	COVID	deaths	(<10)	in	a	given	age	class.	
	 	



©	SOLARAVUS,	Cupar,	Fife,	UK																												www.solaravus.com	
	

45	

Michigan	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 2,838,818	 		,638,026	 		,680,769	 		,476,813	 222,455	 		69,935	
pop’n	(F)	 2,744,166	 		,652,733	 		,720,950	 		,532,373	 284,519	 134,358	
pop’n	(M/F)	 5,582,984	 1,290,759	 1,401,719	 1,009,186	 506,974	 204,293	
deaths	(M)	 		80	 187	 385	 		,722	 		,769	 		,582	
deaths	(F)	 		43	 106	 252	 		,516	 		,621	 		,953	
deaths	(M/F)	 123	 293	 637	 1,238	 1,390	 1,535	
NMAP	(M)	 1.99×10-3	 2.07×10-2	 3.99×10-2	 0.107	 0.244	 0.587	
NMAP	(F)	 1.45×10-3	 1.51×10-2	 3.24×10-2	 9.00×10-2	 0.203	 0.658	
NMAP	(M/F)	 1.81×10-3	 1.86×10-2	 3.73×10-2	 0.101	 0.225	 0.617	
	
	
	
Minnesota	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 1,670,328	 347,261	 373,337	 245,473	 114,663	 		42,918	
pop’n	(F)	 1,606,130	 342,419	 383,070	 265,013	 148,112	 		72,455	
pop’n	(M/F)	 3,276,458	 689,680	 756,407	 510,486	 262,775	 115,373	
deaths	(M)	 7	 18	 63	 119	 191	 239	
deaths	(F)	 –	 –	 32	 		86	 174	 368	
deaths	(M/F)	 –	 –	 95	 205	 365	 607	
NMAP	(M)	 5.28×10-4	 6.52×10-3	 2.12×10-2	 6.10×10-2	 0.210	 0.701	
NMAP	(F)	 –	 –	 1.25×10-2	 4.87×10-2	 0.176	 0.762	
NMAP	(M/F)	 –	 –	 1.75×10-2	 5.60×10-2	 0.194	 0.733	
	
	
	
Mississippi	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 		,884,624	 174,482	 182,054	 131,500	 		58,563	 15,606	
pop’n	(F)	 		,884,346	 185,182	 201,419	 152,856	 		85,144	 30,754	
pop’n	(M/F)	 1,768,970	 359,664	 383,473	 284,356	 143,707	 46,360	
deaths	(M)	 17	 33	 		69	 118	 125	 		72	
deaths	(F)	 19	 26	 		62	 		97	 121	 146	
deaths	(M/F)	 36	 59	 131	 215	 246	 218	
NMAP	(M)	 2.33×10-3	 2.30×10-2	 4.60×10-2	 0.109	 0.260	 0.560	
NMAP	(F)	 2.95×10-3	 1.93×10-2	 4.23×10-2	 8.73×10-2	 0.195	 0.653	
NMAP	(M/F)	 2.64×10-3	 2.13×10-2	 4.44×10-2	 9.82×10-2	 0.222	 0.611	
	
	
	
Table	2	(cont):	demographic	and	COVID-19	mortality	data	by	gender	and	age	class	for	each	
State	in	US25,	along	with	the	resulting	NMAPs,	calculated	according	to	the	method	provided	
in	Appendix	A.1.	A	dash	indicates	restricted	data	arising	from	the	CDC	privacy	policy	on	low	
numbers	of	COVID	deaths	(<10)	in	a	given	age	class.	
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Missouri	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 1,775,158	 369,432	 401,755	 276,416	 137,039	 		43,365	
pop’n	(F)	 1,729,982	 383,922	 431,129	 320,207	 176,607	 		81,440	
pop’n	(M/F)	 3,505,140	 753,354	 832,884	 596,623	 313,646	 124,805	
deaths	(M)	 5	 18	 56	 102	 131	 109	
deaths	(F)	 –	 –	 34	 		68	 103	 213	
deaths	(M/F)	 –	 –	 90	 170	 234	 322	
NMAP	(M)	 6.99×10-4	 1.21×10-2	 3.46×10-2	 9.16×10-2	 0.237	 0.624	
NMAP	(F)	 –	 –	 2.26×10-2	 6.09×10-2	 0.167	 0.749	
NMAP	(M/F)	 –	 –	 2.91×10-2	 7.66×10-2	 0.201	 0.694	
	
	
	
New	Jersey	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 2,541,332	 		,601,079	 		,587,462	 372,185	 181,182	 		67,156	
pop’n	(F)	 2,476,639	 		,632,520	 		,631,209	 440,168	 248,996	 128,602	
pop’n	(M/F)	 5,017,961	 1,233,599	 1,218,671	 812,353	 430,178	 195,758	
deaths	(M)	 257	 502	 1,112	 1,556	 1,778	 1,645	
deaths	(F)	 		93	 171	 		,519	 		,928	 1,559	 2,723	
deaths	(M/F)	 350	 673	 1,631	 2,484	 3,337	 4,368	
NMAP	(M)	 2.45×10-3	 2.02×10-2	 4.58×10-2	 0.101	 0.238	 0.593	
NMAP	(F)	 1.22×10-3	 8.81×10-3	 2.68×10-2	 6.87×10-2	 0.204	 0.690	
NMAP	(M/F)	 1.99×10-3	 1.56×10-2	 3.81×10-2	 8.72×10-2	 0.221	 0.636	
	
	
	
New	York	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 		5,624,636	 1,242,488	 1,243,082	 		,832,067	 402,125	 146,915	
pop’n	(F)	 		5,551,953	 1,314,850	 1,353,135	 		,979,528	 565,716	 285,714	
pop’n	(M/F)	 11,176,589	 2,557,338	 2,596,217	 1,811,595	 967,841	 432,629	
deaths	(M)	 656	 1,249	 2,873	 4,339	 4,324	 3,346	
deaths	(F)	 240	 		,474	 1,369	 2,386	 3,347	 4,927	
deaths	(M/F)	 896	 1,723	 4,242	 6,725	 7,671	 8,273	
NMAP	(M)	 2.77×10-3	 2.38×10-2	 5.48×10-2	 0.124	 0.255	 0.540	
NMAP	(F)	 1.60×10-3	 1.33×10-2	 3.75×10-2	 9.02×10-2	 0.219	 0.638	
NMAP	(M/F)	 2.42×10-3	 2.03×10-2	 4.93×10-2	 0.112	 0.239	 0.577	
	
	
	
Table	2	(cont):	demographic	and	COVID-19	mortality	data	by	gender	and	age	class	for	each	
State	in	US25,	along	with	the	resulting	NMAPs,	calculated	according	to	the	method	provided	
in	Appendix	A.1.	A	dash	indicates	restricted	data	arising	from	the	CDC	privacy	policy	on	low	
numbers	of	COVID	deaths	(<10)	in	a	given	age	class.	
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North	Carolina	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 3,009,520	 		,670,067	 		,634,795	 		,465,008	 213,321	 		59,533	
pop’n	(F)	 2,964,670	 		,708,020	 		,707,974	 		,548,988	 282,190	 119,534	
pop’n	(M/F)	 5,974,190	 1,378,087	 1,342,769	 1,013,996	 495,511	 179,067	
deaths	(M)	 19	 29	 47	 101	 137	 116	
deaths	(F)	 		6	 10	 34	 		76	 126	 158	
deaths	(M/F)	 25	 39	 81	 177	 263	 274	
NMAP	(M)	 2.15×10-3	 1.48×10-2	 2.53×10-2	 7.41×10-2	 0.219	 0.665	
NMAP	(F)	 1.03×10-3	 7.17×10-3	 2.44×10-2	 7.02×10-2	 0.227	 0.671	
NMAP	(M/F)	 1.80×10-3	 1.22×10-2	 2.59×10-2	 7.50×10-2	 0.228	 0.657	
	
	
	
Ohio	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 3,340,591	 		,735,765	 		,780,862	 		,537,165	 254,307	 		83,405	
pop’n	(F)	 3,251,683	 		,752,436	 		,831,942	 		,615,196	 341,210	 164,880	
pop’n	(M/F)	 6,592,274	 1,488,201	 1,612,804	 1,152,361	 595,517	 248,285	
deaths	(M)	 23	 46	 152	 291	 344	 338	
deaths	(F)	 		7	 19	 		69	 150	 332	 485	
deaths	(M/F)	 30	 65	 221	 441	 676	 823	
NMAP	(M)	 1.11×10-3	 1.01×10-2	 3.13×10-2	 8.72×10-2	 0.218	 0.652	
NMAP	(F)	 5.04×10-4	 5.92×10-3	 1.94×10-2	 5.71×10-2	 0.228	 0.689	
NMAP	(M/F)	 9.07×10-4	 8.70×10-3	 2.73×10-2	 7.63×10-2	 0.226	 0.661	
	
	
	
Pennsylvania	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 3,552,410	 		,819,094	 		,879,291	 		,614,944	 298,548	 107,333	
pop’n	(F)	 3,451,209	 		,840,447	 		,932,240	 		,696,215	 409,022	 206,307	
pop’n	(M/F)	 7,003,619	 1,659,541	 1,811,531	 1,311,159	 707,570	 313,640	
deaths	(M)	 51	 143	 371	 		,697	 		,906	 1,052	
deaths	(F)	 20	 		61	 215	 		,497	 		,770	 1,817	
deaths	(M/F)	 71	 204	 586	 1,194	 1,676	 2,869	
NMAP	(M)	 9.85×10-4	 1.20×10-2	 2.89×10-2	 7.77×10-2	 0.208	 0.672	
NMAP	(F)	 4.95×10-4	 6.20×10-3	 1.97×10-2	 6.09×10-2	 0.161	 0.752	
NMAP	(M/F)	 7.87×10-4	 9.54×10-3	 2.51×10-2	 7.07×10-2	 0.184	 0.710	
	
	
	
Table	2	(cont):	demographic	and	COVID-19	mortality	data	by	gender	and	age	class	for	each	
State	in	US25,	along	with	the	resulting	NMAPs,	calculated	according	to	the	method	provided	
in	Appendix	A.1.	A	dash	indicates	restricted	data	arising	from	the	CDC	privacy	policy	on	low	
numbers	of	COVID	deaths	(<10)	in	a	given	age	class.	
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Rhode	Island	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 296,955	 		67,924	 		71,466	 		48,982	 22,203	 		8,370	
pop’n	(F)	 289,151	 		72,082	 		77,092	 		54,289	 30,712	 18,089	
pop’n	(M/F)	 586,106	 140,006	 148,558	 103,271	 52,915	 26,459	
deaths	(M)	 –	 –	 40	 		83	 112	 125	
deaths	(F)	 –	 –	 19	 		67	 109	 246	
deaths	(M/F)	 –	 –	 59	 150	 221	 371	
NMAP	(M)	 –	 –	 2.52×10-2	 7.62×10-2	 0.227	 0.672	
NMAP	(F)	 –	 –	 1.32×10-2	 6.62×10-2	 0.191	 0.730	
NMAP	(M/F)	 –	 –	 1.98×10-2	 7.25×10-2	 0.208	 0.699	
	
	
	
Texas	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 		9,319,033	 1,757,311	 1,567,960	 1,014,948	 		,459,051	 131,881	
pop’n	(F)	 		8,998,298	 1,793,688	 1,665,956	 1,159,346	 		,583,319	 251,054	
pop’n	(M/F)	 18,317,331	 3,550,999	 3,233,916	 2,174,294	 1,042,370	 382,935	
deaths	(M)	 		66	 122	 263	 348	 302	 231	
deaths	(F)	 		35	 		48	 104	 173	 238	 291	
deaths	(M/F)	 101	 170	 367	 521	 540	 522	
NMAP	(M)	 2.36×10-3	 2.32×10-2	 5.60×10-2	 0.114	 0.220	 0.585	
NMAP	(F)	 2.15×10-3	 1.48×10-2	 3.45×10-2	 8.25×10-2	 0.225	 0.641	
NMAP	(M/F)	 2.41×10-3	 2.09×10-2	 4.96×10-2	 0.105	 0.226	 0.596	
	
	
	
Virginia	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 2,530,051	 		,548,071	 		,528,235	 362,212	 169,277	 		52,892	
pop’n	(F)	 2,450,381	 		,567,624	 		,575,098	 417,290	 221,260	 		95,294	
pop’n	(M/F)	 4,980,432	 1,115,695	 1,103,333	 779,502	 390,537	 148,186	
deaths	(M)	 16	 47	 120	 192	 261	 226	
deaths	(F)	 10	 17	 		63	 143	 230	 398	
deaths	(M/F)	 26	 64	 183	 335	 491	 624	
NMAP	(M)	 9.49×10-4	 1.29×10-2	 3.41×10-2	 7.95×10-2	 0.231	 0.641	
NMAP	(F)	 7.16×10-4	 5.25×10-3	 1.92×10-2	 6.01×10-2	 0.182	 0.732	
NMAP	(M/F)	 8.52×10-4	 9.36×10-3	 2.71×10-2	 7.01×10-2	 0.205	 0.687	
	
	
	
Table	2	(cont):	demographic	and	COVID-19	mortality	data	by	gender	and	age	class	for	each	
State	in	US25,	along	with	the	resulting	NMAPs,	calculated	according	to	the	method	provided	
in	Appendix	A.1.	A	dash	indicates	restricted	data	arising	from	the	CDC	privacy	policy	on	low	
numbers	of	COVID	deaths	(<10)	in	a	given	age	class.	
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Washington	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 2,297,145	 469,013	 468,346	 338,061	 147,359	 		46,935	
pop’n	(F)	 2,183,080	 461,908	 492,112	 372,720	 177,791	 		81,121	
pop’n	(M/F)	 4,480,225	 930,921	 960,458	 710,781	 325,150	 128,056	
deaths	(M)	 17	 30	 		71	 127	 164	 191	
deaths	(F)	 		4	 16	 		34	 		90	 138	 225	
deaths	(M/F)	 21	 46	 105	 217	 302	 416	
NMAP	(M)	 1.28×10-3	 1.11×10-2	 2.62×10-2	 6.50×10-2	 0.193	 0.704	
NMAP	(F)	 4.70×10-4	 8.89×10-3	 1.77×10-2	 6.20×10-2	 0.199	 0.712	
NMAP	(M/F)	 1.01×10-3	 1.06×10-2	 2.35×10-2	 6.57×10-2	 0.200	 0.699	
	
	
Table	2	(cont):	demographic	and	COVID-19	mortality	data	by	gender	and	age	class	for	each	
State	in	US25,	along	with	the	resulting	NMAPs,	calculated	according	to	the	method	provided	
in	Appendix	A.1.	A	dash	indicates	restricted	data	arising	from	the	CDC	privacy	policy	on	low	
numbers	of	COVID	deaths	(<10)	in	a	given	age	class.	
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State	 Abb’n	 NMAP	index	

Male	 Female	 Total	
Alabama	 AL	 0.835		(7.7%)	 0.805		(5.9%)	 0.801		(6.1%)	
Arizona	 AZ	 0.781	(13.0%)	 0.877		(8.3%)	 0.811	(10.9%)	
California	 CA	 0.818		(1.5%)	 1.033		(4.5%)	 0.888		(3.5%)	
Colorado	 CO	 1.015		(5.1%)	 1.239		(5.0%)	 1.077		(5.0%)	
Connecticut	 CT	 1.103		(2.0%)	 1.337		(2.4%)	 1.182		(1.8%)	
Florida	 FL	 0.854		(0.9%)	 1.072		(3.6%)	 0.932		(2.5%)	
Georgia	 GA	 0.912		(2.1%)	 0.988		(3.3%)	 0.938		(0.8%)	
Illinois	 IL	 0.821		(2.3%)	 1.001		(3.4%)	 0.876		(3.0%)	
Indiana	 IN	 1.061		(3.2%)	 1.144		(0.7%)	 1.088		(1.7%)	
Louisiana	 LA	 0.866		(2.5%)	 0.960		(4.2%)	 0.894		(2.3%)	
Maryland	 MD	 0.953		(3.2%)	 1.079		(2.8%)	 1.000		(2.4%)	
Massachusetts	 MA	 1.230		(1.2%)	 1.293		(3.4%)	 1.249		(1.1%)	
Michigan	 MI	 0.850		(3.1%)	 0.939		(4.1%)	 0.880		(3.3%)	
Minnesota	 MN	 1.164		(1.4%)	 1.361		(1.8%)	 1.245		(2.2%)	
Mississippi	 MS	 0.812		(2.1%)	 0.857		(6.1%)	 0.832		(3.5%)	
Missouri	 MO	 0.981		(1.1%)	 1.151		(7.6%)	 1.048		(4.5%)	
New	Jersey	 NJ	 0.840		(1.6%)	 1.075		(2.4%)	 0.918		(2.6%)	
New	York	 NY	 0.778		(1.7%)	 0.950		(2.1%)	 0.827		(1.5%)	
North	Carolina	 NC	 0.977		(6.6%)	 1.131		(1.2%)	 1.016		(3.8%)	
Ohio	 OH	 1.028		(2.0%)	 1.200		(2.1%)	 1.077		(0.8%)	
Pennsylvania	 PA	 1.003		(2.9%)	 1.170		(4.2%)	 1.061		(3.9%)	
Rhode	Island	 RI	 1.094		(0.3%)	 1.309		(5.6%)	 1.175		(2.6%)	
Texas	 TX	 0.782		(3.8%)	 0.941		(2.8%)	 0.822		(2.6%)	
Virginia	 VA	 0.973	(2.1%)	 1.213	(2.2%)	 1.062	(2.4%)	
Washington	 WA	 1.030	(5.0%)	 1.118	(5.5%)	 1.051	(4.7%)	

	
	
	
Table	3:	NMAP	indices	(NIs)	measured	from	the	slopes	of	log(NMAP)	versus	age	class	plots	
(with	%	error	in	parentheses)	for	each	State	in	US25.	In	63	of	the	75	cases	the	error	is	≤	5.0%	
indicating	the	NMAP	approximately	follows	an	exponential	dependency	on	age	class,	and	
can	therefore	be	captured	by	a	single	parameter.	Those	NIs	for	which	the	error	in	log-linear	
fitting	exceeds	5.0%	are	coloured	red.	These	data	are	excluded	from	the	analysis	in	Figure	3	
as	the	NMAP	in	those	cases	does	not	approximately	follow	an	exponential	dependency	on	
age	class	and	requires	more	than	one	parameter	for	characterisation	(cf.	Figure	1	for	
examples).	Data	calculated	from	restricted	datasets	(arising	from	the	CDC	privacy	policy	on	
numbers	of	COVID	deaths	<10	in	a	given	age	class)	are	shaded	light	grey	for	reference.	
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Delaware	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 263,964	 		58,962	 		64,019	 		49,802	 23,502	 		7,675	
pop’n	(F)	 263,299	 		63,925	 		72,246	 		58,093	 30,755	 10,929	
pop’n	(M/F)	 527,263	 122,887	 136,265	 107,895	 54,257	 18,604	
deaths	(M)	 –	 –	 26	 56	 		57	 		58	
deaths	(F)	 5	 14	 19	 36	 		61	 114	
deaths	(M/F)	 –	 –	 45	 92	 118	 172	
NMAP	(M)	 –	 –	 3.53×10-2	 9.77×10-2	 0.211	 0.656	
NMAP	(F)	 1.40×10-3	 1.62×10-2	 1.94×10-2	 4.58×10-2	 0.147	 0.771	
NMAP	(M/F)	 –	 –	 2.62×10-2	 6.77×10-2	 0.173	 0.734	
	
	
	
District	of	Columbia	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 227,771	 38,041	 33,166	 21,005	 		9,913	 		4,312	
pop’n	(F)	 243,510	 37,485	 36,856	 27,828	 15,979	 		6,589	
pop’n	(M/F)	 471,281	 75,526	 70,022	 48,833	 25,892	 10,901	
deaths	(M)	 17	 31	 52	 102	 		70	 		50	
deaths	(F)	 		5	 15	 30	 		54	 		46	 		70	
deaths	(M/F)	 22	 46	 82	 156	 116	 120	
NMAP	(M)	 2.87×10-3	 3.14×10-2	 6.04×10-2	 0.187	 0.272	 0.446	
NMAP	(F)	 1.23×10-3	 2.40×10-2	 4.88×10-2	 0.116	 0.173	 0.637	
NMAP	(M/F)	 2.28×10-3	 2.97×10-2	 5.71×10-2	 0.156	 0.218	 0.537	
	
	
	
New	Hampshire	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 359,127	 		94,079	 104,134	 		70,969	 30,029	 11,104	
pop’n	(F)	 349,370	 		95,639	 108,953	 		75,630	 37,704	 19,720	
pop’n	(M/F)	 708,497	 189,718	 213,087	 146,599	 67,733	 30,824	
deaths	(M)	 –	 –	 14	 30	 56	 		67	
deaths	(F)	 –	 –	 –	 19	 41	 		93	
deaths	(M/F)	 –	 –	 –	 49	 97	 160	
NMAP	(M)	 –	 –	 1.59×10-2	 5.00×10-2	 0.221	 0.714	
NMAP	(F)	 –	 –	 –	 4.15×10-2	 0.180	 0.779	
NMAP	(M/F)	 –	 –	 –	 4.80×10-2	 0.206	 0.746	
	
	
	
Table	4a:	demographic	and	COVID-19	mortality	data	by	gender	and	age	class	for	six	
additional	US	States/Regions	for	use	in	the	north-eastern	US	and	US	west	coast	analyses,	
along	with	the	resulting	NMAPs,	calculated	according	to	the	method	provided	in	Appendix	
A.1.	A	dash	indicates	restricted	data	arising	from	the	CDC	privacy	policy	on	low	numbers	of	
COVID	deaths	(<10)	in	a	given	age	class.	
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New	York	City	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 2,520,663	 		,504,974	 		,465,360	 306,443	 154,206	 		52,287	
pop’n	(F)	 2,576,520	 		,550,900	 		,534,851	 393,493	 230,971	 108,080	
pop’n	(M/F)	 5,097,183	 1,055,874	 1,000,211	 699,936	 385,177	 160,367	
deaths	(M)	 500	 		,914	 2,043	 3,015	 2,870	 1,953	
deaths	(F)	 171	 		,362	 		,966	 1,645	 2,117	 2,550	
deaths	(M/F)	 671	 1,276	 3,009	 4,660	 4,987	 4,503	
NMAP	(M)	 2.75×10-3	 2.51×10-2	 6.08×10-2	 0.136	 0.258	 0.517	
NMAP	(F)	 1.68×10-3	 1.66×10-2	 4.58×10-2	 0.106	 0.232	 0.598	
NMAP	(M/F)	 2.53×10-3	 2.32×10-2	 5.78×10-2	 0.128	 0.249	 0.540	
	
	
	
New	York	State	excl.	New	York	City	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 3,103,973	 		,737,514	 		,777,722	 		,525,624	 247,919	 		94,628	
pop’n	(F)	 2,975,433	 		,763,950	 		,818,284	 		,586,035	 334,745	 177,634	
pop’n	(M/F)	 6,079,406	 1,501,464	 1,596,006	 1,111,659	 582,664	 272,262	
deaths	(M)	 156	 335	 		,830	 1,324	 1,454	 1,393	
deaths	(F)	 		69	 112	 		,403	 		,741	 1,230	 2,377	
deaths	(M/F)	 225	 447	 1,233	 2,065	 2,684	 3,770	
NMAP	(M)	 2.04×10-3	 1.84×10-2	 4.32×10-2	 0.102	 0.238	 0.597	
NMAP	(F)	 1.22×10-3	 7.72×10-3	 2.59×10-2	 6.66×10-2	 0.194	 0.705	
NMAP	(M/F)	 1.73×10-3	 1.39×10-2	 3.61×10-2	 8.67×10-2	 0.215	 0.647	
	
	
	
Oregon	

age	classes	 <45	 45-54	 55-64	 65-74	 75-84	 ≥85	
pop’n	(M)	 1,215,013	 263,087	 261,063	 213,903	 		98,177	 28,700	
pop’n	(F)	 1,172,808	 256,393	 282,738	 233,693	 112,456	 52,682	
pop’n	(M/F)	 2,387,821	 519,480	 543,801	 447,596	 210,633	 81,382	
deaths	(M)	 –	 –	 16	 32	 26	 26	
deaths	(F)	 –	 –	 –	 20	 22	 37	
deaths	(M/F)	 –	 –	 –	 52	 48	 63	
NMAP	(M)	 –	 –	 4.44×10-2	 0.108	 0.192	 0.656	
NMAP	(F)	 –	 –	 –	 8.70×10-2	 0.199	 0.714	
NMAP	(M/F)	 –	 –	 –	 0.104	 0.204	 0.692	
	
	
	
	
Table	4a	(cont):	demographic	and	COVID-19	mortality	data	by	gender	and	age	class	for	six	
additional	US	States/Regions	for	use	in	the	north-eastern	US	and	US	west	coast	analyses,	
along	with	the	resulting	NMAPs,	calculated	according	to	the	method	provided	in	Appendix	
A.1.	A	dash	indicates	restricted	data	arising	from	the	CDC	privacy	policy	on	low	numbers	of	
COVID	deaths	(<10)	in	a	given	age	class.	
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British	Columbia	

age	classes	 40-49	 50-59	 60-69	 70-79	 80-89	 ≥90	
pop’n	 617,410	 709,300	 611,615	 347,010	 172,765	 41,685	
deaths	 2	 5	 16	 34	 79	 53	
NMAP	 1.74×10-3	 3.78×10-3	 1.40×10-2	 5.26×10-2	 0.245	 0.682	
	
	
Ontario	
		 	 	

age	classes	 <20	 20-39	 40-59	 60-79	 ≥80	
pop’n	 3,019,640	 3,475,990	 3,855,065	 2,505,545	 592,260	
deaths	 1	 11	 115	 736	 1,889	
NMAP	 9.42×10-5	 9.00×10-4	 8.48×10-3	 8.35×10-2	 0.907	
	
	
Quebec	
		 	 f 	 	 	 		
age	classes	 <20	 20-39	 40-59	 60-79	 ≥80	
pop’n	 1,763,085	 2,061,555	 2,281,860	 1,681,340	 376,520	
%	deaths	 –	 0.2	 2.2	 24.0	 73.7	
deaths*	 –	 ~11	 ~125	 ~1360	 ~4170	
NMAP	 –	 4.60×10-4	 4.57×10-3	 6.76×10-2	 0.927	
*The	official	Quebec	data	for	deaths	are	provided	as	percentages	of	the	total		
		(5,666	as	of	July	18th	2020).	The	numbers	of	deaths	are	thereby	inferred	and		
		rounded	to	integer	values	as	a	guide	to	the	reader.	The	NMAP	is	calculated		
		directly	from	the	percentages	data.		
	
	
Table	4b:	demographic	and	COVID-19	mortality	data	by	age	class	for	the	three	most	
populous	Canadian	Provinces,	using	mid-July	data,	along	with	the	resulting	NMAPs,	
calculated	according	to	the	method	provided	in	Appendix	A.1.	Note	the	age	classes	for	BC	
are	decadal	but	shifted	by	5	years	relative	to	the	US	data,	and	the	age	classes	for	ON	and	QC	
are	not	decadal,	but	defined	for	twenty	years	periods.	(The	population	data	is	from	the	last	
official	census	of	2016.	Given	NMAPs	are	normalised,	the	effect	of	population	increases	over	
the	past	four	years	will	be	small	assuming	demographic	profiles	across	age	groups	have	not	
changed	significantly.)	
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State	 Abb’n	 NMAP	index	

Male	 Female	 Total	
Delaware	 DE	 0.954		(5.0%)	 0.975	(16.4%)	 1.093		(8.0%)	
D.	of	Columbia	 DC	 0.682		(10.7%)	 0.782		(9.1%)	 0.713		(7.2%)	
New	Hampshire	 NH	 1.290		(3.6%)	 1.466		(0.0%)	 1.371		(3.5%)	
New	York	City	 NYC	 0.750		(3.8%)	 0.879		(2.4%)	 0.775		(3.1%)	
NY	excl.	NYC	 NY–NYC	 0.866		(0.9%)	 1.104		(2.9%)	 0.946		(2.3%)	
Oregon	 OR	 0.865	(10.1%)	 1.052	(12.4%)	 0.948	(16.7%)	
Br.	Columbia	 BC	 N/A	 N/A	 1.249		(4.1%)	
Ontario	 ON	 N/A	 N/A	 1.144		(0.7%)	
Quebec	 QC	 N/A	 N/A	 1.276		(2.4%)	

	
	
	
Table	5:	NMAP	indices	(NIs)	measured	from	plots	of	log(NMAP)	versus	age	class	(with	%	
error	in	parentheses)	for	the	6	additional	States/Regions	included	in	the	north-eastern	US	
and	US	west	coast	analyses,	and	the	3	most	populous	Canadian	Provinces.	Those	NIs	for	
which	the	error	in	log-linear	fitting	exceeds	5.0%	are	coloured	red	(8	out	of	18	cases).	These	
data	are	excluded	from	quantitative	analysis	as	the	NMAP	in	such	cases	does	not	
approximately	follow	an	exponential	dependency	on	age	class	and	requires	more	than	one	
parameter	for	characterisation.	Data	calculated	from	restricted	datasets	(arising	from	the	
CDC	privacy	policy	on	numbers	of	COVID	deaths	<10	in	a	given	age	class)	are	shaded	light	
grey	for	reference.	
	


