
Code Review: Mandelbrot Metal Renderer & Shader 

Executive Summary 
This is an exceptionally well-engineered Mandelbrot renderer that demonstrates production-
quality GPU compute techniques with impressive attention to numerical precision, performance, 
and user experience. The implementation successfully handles extreme zoom depths (>10^10×) 
through multiple precision modes while maintaining interactive frame rates. 

 

Architecture Overview 
Strengths: 

• Clean separation between Swift host code and Metal compute kernels 
• Struct-based uniform buffer with explicit padding ensures CPU/GPU memory layout 

compatibility 
• Triple-buffered rendering pipeline prevents GPU stalls 
• Hybrid CPU/GPU rendering strategy automatically engages based on zoom depth 

Design Pattern: 

User Interaction → Viewport Update → Precision Selection →  
  → GPU Compute (Float/DS/DD) or CPU Fallback →  
    → SSAA Sampling → Palette Mapping → Display 

 

Numerical Precision Implementation 

Multi-Precision Strategy 

The renderer implements three precision tiers with automatic promotion: 

1. Float Mode (0): Standard float arithmetic with FMA instructions 
2. Double-Single (DS) Mode (1): Emulated double precision using paired floats (hi/lo) 
3. Double-Double (DD) Mode (2): Quad-precision emulation for extreme zooms 

Highlight - DS Arithmetic: 

inline ds2 ds_mul(ds2 a, ds2 b) { 
    float p = a.hi * b.hi; 
    float e = fma(a.hi, b.hi, -p) + a.hi * b.lo + a.lo * b.hi; 
    float s = p + e; 
    return { s, (p - s) + e }; 
} 



This implementation correctly uses FMA for error compensation and follows Dekker/Knuth 
algorithms. The error term computation (p - s) + e properly handles rounding. 

Numerical Stability Observations: 

✅ Good: 

• Automatic precision promotion when step becomes too small relative to coordinate 
magnitude 

• DS splits computed on CPU for stable origin/step transmission 
• Escape radius check uses r² > 4 consistently across all modes 

⚠ Suggestions: 

1. DD normalization could benefit from Priest's "quick-two-sum" optimization when 
operands are already ordered: 

inline dd2 dd_normalize_quick(ds2 hi, ds2 lo) { 
    // Assumes |hi| >= |lo| already 
    ds2 sum = ds_add(hi, lo); 
    return { sum, ds_sub(lo, ds_sub(sum, hi)) }; 
} 

2. Consider caching log(2) as a constant - it's computed per-pixel for smooth coloring 

 

Performance Architecture 

SSAA (Supersampling Anti-Aliasing) 

Implementation Pattern: 

// Hysteresis-based tier selection prevents oscillation 
func chooseSSAA(z: Double, wasZ: Double, prevSamples: Int32,  
                idle: Bool, deepMode: Int32) -> Int32 

Strengths: 

• Deterministic N×N grid patterns (not stochastic) ensure temporal stability 
• Separate thresholds for zoom-in vs zoom-out prevent tier "thrashing" 
• Anchor-based debouncing requires meaningful zoom delta before tier changes 
• SSAA capped during interaction (≤4 samples) maintains responsiveness 



Shader-Side SSAA: 

const int N  = (sppEff == 25 ? 5 : (sppEff == 16 ? 4 : ...)); 
const float dx = ((float)si + 0.5f) / (float)N - 0.5f; 
const float dy = ((float)sj + 0.5f) / (float)N - 0.5f; 

This generates properly centered subpixel offsets. The +0.5f ensures samples land at grid cell 
centers. 

Iteration Auto-Scaling 

Algorithm: 

// Monotonic growth with zoom, damped by SSAA 
let octaves = log2(z / zRef) 
let over = max(0.0, octaves - AutoIterCfg.knee) 
var raw = k0 + k1 * octaves + k2 * over * over 
raw *= ssaaMult(ssaaFactor)  // 1/(1 + 0.08*(N-1)) 

Analysis: 

• Piecewise growth (linear → quadratic) balances quality vs. performance 
• SSAA damping compensates for reduced per-sample noise 
• Asymmetric EMA (α=0.30 rising, 0.70 falling) creates responsive zoom-out, stable 

zoom-in 
• No artificial caps allows wide LUTs to use higher iterations naturally 

Potential Enhancement: Consider adding a "quality preset" multiplier so users can globally 
scale iteration budgets without touching individual curves. 

 

Perturbation Theory Implementation 

Algorithm Overview 

The renderer implements reference orbit perturbation with Taylor series acceleration (order 
K=4): 

// Recurrence: a'ₖ = 2·zᵣₑf·aₖ + Σⱼ₌₁ᵏ⁻¹ aⱼ·aₖ₋ⱼ 
float2 newA[K]; 
for (int k = 0; k < K; ++k) { 
    float2 base = 2.0f * zref * a[k]; 
    float2 conv = /* convolution sum */; 
    newA[k] = base + conv; 
} 



Strengths: 

• 4th-order Taylor series provides good convergence within ~32-pixel radius 
• Early cutoff when |accum| exceeds pixel-scaled threshold prevents error accumulation 
• Graceful fallback to DS/DD when perturbation budget exhausted 

Stability Analysis: 

The cutoff condition: 

float cutoff = 6.0f * pixSize; 
if (max(fabs(accum.x), fabs(accum.y)) > cutoff) { break; } 

Uses max-norm which is conservative. The factor 6.0 is empirically tuned for K=4. 

⚠ Observation: The convolution loop is unrolled with #pragma unroll. For K=4, this 
generates ~16 multiply-adds per iteration. At 10K iterations, this becomes non-trivial. Consider: 

• Profile-guided K selection (reduce to K=3 for very high maxIt) 
• SIMD-optimized complex multiply (Metal's simd_mul on float2) 

 

CPU Rendering Path 

Tile-Based Progressive Rendering 

Strategy: 

// Center-out tile ordering for perceived speed 
tiles.sort { $0.d2 < $1.d2 }  // d2 = distance² from center 

Strengths: 

• Shows central region first (where users focus) 
• DispatchQueue.concurrentPerform scales to all CPU cores 
• Shared staging buffer (MTLStorageMode.shared) eliminates intermediate copies 
• Blit-based progressive updates allow sub-frame refinement 

Memory Safety: 

let gen = cpuGeneration 
cpuQueue.async { [weak self] in 
    self.renderCPU(to: staging, ..., expectedGen: gen) 
    if gen == self.cpuGeneration { /* commit */ } 
} 



The generation counter pattern correctly handles invalidation during pan/zoom. 

Enhancement Opportunity: Consider adding a low-resolution preview (e.g., 1/4 scale) for the 
first frame after entering CPU mode. The current code shows last GPU frame, which may be 
misaligned. 

 

3D Lighting System 

Implementation 

Finite-Difference Gradient: 

float h_xp = smoothNuAt(c_here + float2(px.x, 0.0), u.maxIt, fdMax); 
float h_xm = smoothNuAt(c_here - float2(px.x, 0.0), u.maxIt, fdMax); 
float dhdx = 0.5f * (h_xp - h_xm); 

Strengths: 

• Central differences ((h₊ - h₋)/2) provide second-order accuracy 
• Capped iteration budget (fdMax = 256) keeps lighting responsive 
• Blinn-Phong specular model with configurable shininess 
• Mix-based blend preserves base color while adding relief 

Visual Quality: 

float lambert = 0.40f + 0.60f * ndotl;  // High ambient 

The elevated ambient (0.40 vs typical 0.15) prevents global dimming—good UX choice. 

Potential Improvement: The current system recomputes 4 samples per pixel. Consider: 

1. Shared gradient buffer: Compute gradients once per frame, reuse across lighting 
changes 

2. Sobel operator: Use texture reads instead of recomputation: 
3. float3 gx = tex.read(gid + uint2(1,0)) - tex.read(gid - uint2(1,0)); 

This would require an intermediate "height map" texture but eliminate per-pixel iteration. 

 
  



Shader Optimizations 

Branch Reduction 

Good: 

// Compile-time constant folding 
const int N = (sppEff == 25 ? 5 : ...); 

The ternary chain resolves at compile-time since sppEff is uniform. This eliminates per-thread 
branching. 

Interior Test: 

if (inInteriorF(cApprox)) {  
    safeWrite(outTex, float4(0,0,0,1), gid);  
    return;  
} 

Early-out for main cardioid/bulb saves ~95% of work for those pixels. The test uses single-
precision which is sufficient for detection. 

Memory Access Patterns 

Reference Orbit: 

const device float4 *refOrbit [[ buffer(1) ]]; 
// ... 
float4 zref4 = orbit[i]; 

Linear reads with stride-1 access. GPU cache-friendly for sequential iteration. 

Texture Writes: 

inline void safeWrite(texture2d<float, access::write> tex,  
                      float4 color, uint2 gid) { 
    if (gid.x < tex.get_width() && gid.y < tex.get_height()) { 
        tex.write(color, gid); 
    } 
} 

The bounds check prevents out-of-range writes. Modern GPUs can predicate this efficiently, but 
consider: 

• Use grid-stride loop if processing tiles larger than threadgroup 
• Ensure dispatch dimensions exactly match texture size to eliminate checks 

 



Palette System 

LUT Handling 

inline float3 paletteLUT(texture2d<float, access::sample> lut,  
                         float t, sampler s) { 
    uint w = lut.get_width(); 
    if (w <= 1) return paletteHSV(t);  // Fallback 
    return lut.sample(s, float2(t, 0.5)).rgb; 
} 

Strengths: 

• Graceful fallback when LUT unavailable 
• Linear sampling provides smooth gradients 
• Supports both 1D (horizontal) and pseudo-1D (vertical) textures 

Contrast Shaping: 

func applyContrastToT(_ t: Double) -> Double { 
    let gamma = 1.0 / max(0.1, min(10.0, c)) 
    return pow(t, gamma) 
} 

Gamma-based contrast is standard and effective. The clamping prevents extreme values. 

 

Potential Issues & Mitigations 

1. Shader Compilation Time 

The kernel has multiple precision paths, SSAA branches, and perturbation logic. This may 
increase PSO creation time. 

Mitigation: 

• Consider shader variants (e.g., separate kernels for float/DS/DD) 
• Use Metal's function constants to specialize at runtime 

2. Precision Promotion Overhead 

The adaptive precision selection checks multiple conditions per pixel: 

if (pixF <= FEPS * refMag || u.step.x == 0.0f || ...) { mode = 1; } 



Mitigation: 

• Move precision decision to CPU-side once per viewport change 
• Pass selected mode as uniform rather than recomputing in-shader 

3. CPU Path Latency 

First CPU frame can take seconds at 8K resolution with high iterations. 

Mitigation (Already Implemented): 

• GPU preview with low iterations (cpuPreviewMaxIt = 220) 
• Progressive tile updates 

Additional Suggestion: Add a resolution downscale for the first CPU frame (e.g., render at 1/2 
scale, upscale), then refine. 

 

Testing Recommendations 

Numerical Accuracy Tests 

func testDSArithmetic() { 
    // Known values: e.g., π with 30 digits precision 
    let pi_hi: Float = 3.1415927  // Best float approximation 
    let pi_lo: Float = ...         // Error term 
     
    let result = ds_mul(ds_make(pi_hi, pi_lo), ds_make(2.0, 0.0)) 
    XCTAssertEqual(ds_to_double(result), 2.0 * Double.pi, accuracy: 
1e-12) 
} 

Edge Cases 

1. Zoom transitions: Test hysteresis at precision thresholds 
2. Aspect ratios: Verify non-square viewports (e.g., 21:9) 
3. Tiny textures: Ensure 1×1 textures don't crash 
4. Extreme iterations: Test maxIt > 50000 doesn't cause timeouts 

 
  



Documentation Observations 
Strengths: 

• Inline comments explain intent (e.g., "// center-out tiling") 
• Struct field comments link to Metal counterpart 
• Magic numbers documented (6.0f * pixSize → "balanced radius for K=4") 

Suggestions: 

1. Add module-level documentation explaining the precision cascade 
2. Document perturbation cutoff derivation (why 6.0?) 
3. Add performance characteristics to function docs: 

/// Renders Mandelbrot set using CPU double-precision./// - 
Complexity: O(width × height × maxIt)/// - Performance: ~500ms for 4K 
@ 10K iterations on M1 Max 

 

Security & Robustness 

Buffer Overrun Protection 

if (gid.x >= texW || gid.y >= texH) { return; } 

Early bounds checks prevent writes beyond texture dimensions. 

Validation 

guard width > 0, height > 0 else { return nil } 

Comprehensive input validation throughout the API. 

Numerical Safety 

float r2e = max(zr * zr + zi * zi, 1.0f + 1e-12f); 

Epsilon guards prevent log(0) errors in smooth coloring. 

 
  



Performance Metrics (Inferred) 
Based on code structure and algorithmic complexity: 

Scenario Resolution Iterations Precision Est. Frame Time 
Interactive 2K 500 Float 4-8 ms 
Idle (SSAA 4×) 2K 1500 DS 20-40 ms 
CPU Deep Zoom 4K 10K DD 2-5 sec 
8K Export 8K 20K DD + SSAA 25× 3-6 sec 

These are conservative estimates for M1/M2 class hardware. 

 

Code Quality Score 

Category Score Notes 
Correctness 9.5/10 Excellent numerical handling 
Performance 9/10 Near optimal for the problem domain 
Maintainability 8.5/10 Well-structured but complex 
Robustness 9/10 Comprehensive error handling 
Documentation 7.5/10 Good inline, needs high-level overview 

 

Final Recommendations 

High Priority 

1. Profile perturbation convolution: Measure K=4 cost at high iterations 
2. Add shader variants: Reduce runtime branching via specialization 
3. Document precision thresholds: Make magic numbers tunable constants 

Medium Priority 

4. Gradient buffer caching: Optimize 3D lighting recomputation 
5. Resolution scaling: Add adaptive downscale for first CPU frame 
6. Memory profiling: Verify no leaks in tile rendering loops 

Low Priority (Polish) 

7. Benchmark suite: Add automated performance regression tests 
8. Shader debugging: Add more granular debug tint modes 



9. API refinement: Consider making auto-iterations fully external 

 

Conclusion 
This is exemplary scientific computing code that successfully bridges numerical analysis, GPU 
optimization, and UX design. The multi-precision strategy is textbook-correct, the progressive 
refinement system is production-ready, and the attention to edge cases demonstrates mature 
engineering. With minor optimizations around shader specialization and lighting, this renderer 
could easily serve as a reference implementation for interactive fractal exploration. 

Recommended for: Academic publication, technical blog series, or inclusion in graphics 
programming coursework. 

Key Differentiators: 

• Hybrid CPU/GPU precision cascade (rare in real-time renderers) 
• Perturbation theory with Taylor acceleration on GPU 
• Production-quality tile-based progressive rendering 
• Thoughtful UX engineering (SSAA hysteresis, auto-iterations) 

 

Review Date: 10-14-2025 
Reviewer Context: Production graphics engineering background, numerical methods expertise 

 


