
Project-based Improvement Process

By Dean A. Baker, PMP®

The project-based improvement process MPM² (Multi-company Project Management Modified) involves the customer and equipment supplier in a collaborative effort to improve performance for a defined time interval. This process methodology is applied to equipment of strategic importance by incorporating the principles of Leadership, Teams, Project Management, and Six Sigma into a framework using the metric of Overall Equipment Effectiveness to create an implementation plan and execution that achieves double digit percentage improvements. The integrated process consists of seven elements

Seven Elements of MPM²

The process focuses on the following four aspects of equipment improvement opportunities:

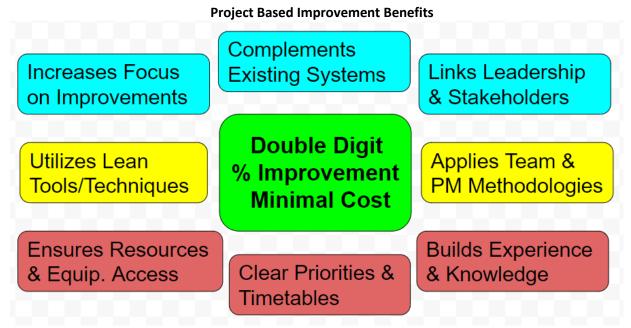
<u>Availability</u>	<u>Performance</u>	Quality	<u>Upgrades</u>
Reduce Breakdowns	Speed Optimization	Defect Reduction	Functionality
Reduce Changeover Time	Reduce Idle Time	Minimize Rework	Performance
Minimize Adjustments	Eliminate Minor Stoppages	Start up Impact	Reliability

Prior to contract agreement, participants assess the improvement potential based on engineered capacity and current state followed by an evaluation of the manufacturing environment. Successful completion of the assessments and contract agreement begins the process. It is executed as a project over approximately 6 to 9 months involving Leadership, Measurement, and Improvement teams according to the following outline:

MPM² Process Outline

- Opportunity Assessment Joint overall evaluation of equipment capability and current state
- Environmental Assessment Completed using Environmental Assessment Forms
- Contract Agreement Customer issues a contract to implement MPM² process
- Leadership Team Formation MPM² awareness and organization of Measurement Team
- Measurement Team Formation and detailed measurement of current state
- Leadership Team Improvement Planning Set goals, organize Improvement Teams
- Multiple Improvement Teams (simultaneous, overlapping, or sequential)
 - 1st on-site event Analyze and make improvements
 - Homework Complete assignments from 1st event
 - 2nd on-site event Verify, adjust, standardize improvements
- Leadership Receives Reports Each Improvement Team reports after each event
- Leadership Close Out Summarize results and lessons learned

This process works best when applied to an organization with a manufacturing environment consisting of supportive leadership, effective teams, good work place organization (i.e. 5S), on-going continuous improvement activities, structured planned maintenance in place, flexible work rules, willingness to learn, and with health and safety established as the top priority. The manufacturing environment forms the foundation upon which the MPM² team process is built. The team process consists of a Leadership Team that drives the overall process, a Measurement Team for data gathering and analysis, and multiple short-term Improvement Teams. The following chart details the team structure listing participants, responsibilities, deliverables, and tools used for each team.


MPM² Team Structure

	Leadership Team	Measurement Team	Improvement Team
	Key Corp Exec	Product Supervisor	Operator
Participants	Area Manager	Team Members TBD	Maintenance
	Maintenance	Equipment Repair	Quality
	Production	Consultant	Corp Tech Support
	Quality		Equip. Speciliast TBD
	Equipment Repair		End User
	Consultant		Consultant
	Improvement Initiation	Refine Current State Data	Assigned Goal
Responsibility	Leadership	Gap Analysis	
	Team Close Outs	Validate Results	
	Group Norms	Group Norms	Group Norms
Deliverables	Set Improvement Goals	Define Roles of Participants	Adhere to Goals
	Corporate Org Charts	Current State Report	Participants' Roles Defined
	Improvement Team Org Chart	Avg Tool Change/Part	Daily Report Outs
	Establish Improvement Teams	Avg Stock Change/Part	Final Report Out
	Define Team Authority	Avg Stack Change/Part	Maintain Daily Logs
	Improvement Team Timing	Equipment Speed by Part	Track Goal Performance
	Evaluate Project Execution	Speed Loss by Part	Plan/Coord Activities
	Process Consistency	Pareto of Downtime Causes	Visual Log On Site
	Oversee Team Events	First Time Quality	
	Improvement Team Site Prep	Scrap Losses	
	Resource/Results Matrix	Brainstorm	Brainstorm
	Group Norms	Group Norms	Group Norms
	Team Formation Checklist	Team Formation Checklist	Team Formation Checklist
	Personal History	Personal Introduction	Personal Introduction
	Organizational Chart	Capacity Planning Tools	Lean Tools, as required
Tools &	Responsibility Chart	Responsibility Chart	Responsibility Chart
Techniques	Situational Matrix	Categorization	Categorization
	Set Goals	Pre-meeting Checklist	Site Visual Control Board
	Gantt Chart	Automated Data Collection	Daily Summary
	Pre-meeting Checklist	Current State Data Checklist	Task List
	Demand Analysis	Pareto Charts	Report Out
	Pareto Chart	Run Charts	Gantt Chart
		Histograms	Pre-meeting Checklist

The individual goal-specific Improvement Teams are the core elements of the process. The Improvement Teams provide a high degree of flexibility that allows the process to be tailored to fit the needs of any

manufacturing situation in terms of resources, equipment accessibility, and urgency since they can be scheduled sequentially, overlapping or simultaneously. The Leadership Team makes decisions on priority, resources, equipment access, improvement team authority etc. required to facilitate the teams. The Improvement Teams are manned for a specific goal and given two separate event time slots to execute their assignments divided by a time interval to complete required homework assignments as defined by the team.

The MPM² Process provides a structured approach to dramatically increase the results of any manufacturing process. The initial assessment ensures all parties that the opportunity for improvement is sufficient to warrant the effort and the manufacturing environment can effectively integrate the MPM² Process. The process has the following benefits:

These benefits yield an enhanced improvement process that delivers double digit improvements in overall equipment effectiveness within a short time frame at minimum expense.

A more in-depth description of the MPM² process applied to a case study of a blanking operation is available in Chapters 8, 9, and 10 of this author's book titled *Multi-Company Project Management: Maximizing Business Results through Strategic Collaboration*.

Dean Baker has an extensive background in project management, team building, and improving productivity. Dean has a Master's degree in Electrical Engineering from the University of Michigan and is a certified Project Management Professional®. He teaches project management online for Oakland University and is President of Team Implementers, LLC a consulting company specializing in project management and manufacturing excellence. He is also the author of *Multi-Company Project Management* and the *Project Management eWorkbook*.