CATALYST TESTING

Overview, Methodology, Reporting, and Full-Scale Application

> Sean A. Bogseth, P.E. October 19, 2016

OVERVIEW

- Laboratory catalyst tests are performed as close to actual operating conditions as possible
- Catalyst sample pulled from the catalyst bed

CATALYST SAMPLES

• SCR Catalyst Samples

- Catalyst cartridge
- Test coupon
- Core sample
- CO Catalyst Samples
 - Catalyst cartridge
 - Test 'button'

LABORATORY TESTS

- SCR Activity 'K'
- NO_X Reduction @ NH₃ Slip
- CO Oxidation
- SO₂ Oxidation
- VOC Oxidation
- Chemical Analysis
 - Usually surface & bulk x-ray flouresence (XRF)
- Pore-Size Distribution / Surface Area Analysis
 - Common to measure Brunauer-Emmett-Teller (BET) surface area
 - Research also showing pore-size distributions may impact deactivation effects

 $K = -Av * \ln(1 - dNOx)$ $RP = K / Av = -\ln(1 - dNOx)$ dNOx @ NH3 / NOX >= 1.0

TEST FACILITIES

• Bench-Scale

- 6" by 6" open area, up to 1.5 m long catalysts
- NO_X reduction, NH_3 slip, CO oxidation, and SO_2 oxidation
- Coal and gas-turbine catalyst

• Semi-Bench

- Less than 6" by 6", up to 1 m long catalyst
- NO_X reduction, NH_3 slip, CO oxidation, and SO_2 oxidation
- Coal and gas-turbine catalyst

• Micro-Scale

- Nominally 1.25" diameter, 6" long core catalyst sample
- NO_X reduction, CO oxidation
- SO2 oxidation , NH_3 slip, and other wet chemical tests not usually performed
- Gas-turbine catalyst ok, but coal catalyst more difficult given the limited surface area
 - Larger pitch coal-catalyst provides less open cells, more cells = more accurate measurement

BENCH-SCALE

Combustion Air and Natural Gas Rotometers and Control Panel

Isothermal SCR Reactors

MICRO-SCALE

MICRO-SCALE

METHODOLOGIES

• VGB Guidelines (VGB-R 302 He)

- Early testing document, 1st edition produced in 1988, 2nd edition published in 1998
- Mainly deals with coal catalyst
- Good definitions of catalyst properties and calculation procedures, but vague on actual testing methodology
- Steag published a supplement to the VGB Guidelines in 2006 to better address actual testing methodology

METHODOLOGIES

• EPRI Protocol (Report 1014256)

- 2nd edition published 2007
- 'Replaced' VGB guidelines
- Coal catalyst testing only
- Defines catalyst properties and calculations as well as test methodologies

:	PROTOCOL FOR LABORATORY TESTING OF SCR CATALYST SAMPLES: 2 nd EDITION
1	1014256
1	Fechnical Update, December 2007
	Fossil Energy Research Corp. 23342-C South Pointe Drive aguna Hills, CA 92653 Principal Investigators Muzio R. Smith J. Muncy W. S. Hinton and Associates 1612 Smugglers Cove Gulf Breeze, FL 32563 Principal Investigator W. Scott Hinton, Ph.D., P.E.
E	EPRI Project Manager D. Broske
3	ELECTRIC POWER RESEARCH INSTITUTE 420 Hilview Avenue, Palo Abo, California \$4304-1395 - PO Box 10412, Palo Abo, California \$4303-0813 - USA 800.313.3774 - 650.855.2121 - ækepn@epri.com - www.epri.com

METHODOLOGIES

EPRI Guidelines (Report 3002006042)

- Published 2015
- 1st document to provide GT SCR catalyst testing methodology
- Gas-turbine catalyst testing and reporting
- Defined catalyst properties and calculations
- Provides guidelines for two test approaches – SCR activity ('K') and NO_x reduction at NH₃ slip limit

MEASUREMENT UNCERTAINITY

Lab Testing Variation

 Round-robin testing of the same catalyst sample in different labs provided a broad range of measured activities

MEASUREMENT UNCERTAINITY

- Calculation Uncertainty
 - The activity measurement itself is prone to uncertainties
 - Example below assuming K = 85 m/hr, NOx-in=100 ppm, Av=20-45 m/hr

Parameter	Uncertainty	
Flow	Q	2%
Sample X-Section Dimension	d	$1 \mathrm{mm}$
Sample Length	L	$1 \mathrm{mm}$
Specific Surface Area	Asp	0 m ² /m ^{3 (a)}
Inlet NO _x	NOxin	0.5 ppm
Outlet NO _x	NO _{x out}	0.1 ppm
Uncertainty	К	2.3 m/hr 2.7%

- Inlet NO_X
 - Low inlet NOX effects SCR activity

- NO_2/NO_X
 - Ratio not only effects NO_X reduction, but also stoichiometry of reaction equations
 - ➤ What NH₃/NO_x?
 - Held \leq 5% during testing

 $\mathrm{NO} + \mathrm{NH_3} + {}^{1}\!\!/_4 \mathrm{O_2} \rightarrow \mathrm{N_2} + 3/2 \mathrm{~H_2O}$

 $6NO_2 + 8NH_3 \rightarrow 7N_2 + 12H_2O$

 $NO_2 + 2NH_3 + \frac{1}{2}O_2 \rightarrow 3/2 N_2 + 3H_2O$

 $NO + NO_2 + 2NH_3 \rightarrow 2N_2 + 2H_2O$

- NH₃/NO_X
 - Coal and natural-gas units naturally operate in different ratio regions
 - Coal catalysts usually tested at 1.0, natural-gas catalyst at 1.2

FERCo

• Area velocity effects on outlet NO_x

- Outlet NO_x
 - Outlet NOX measurement accuracy and variability can greatly alter activity measurement, especially for low concentrations

• New / High-Activity Catalyst

- For high activity catalysts, tests at the actual inlet NO_X may lead to minute outlet NO_X measurements, even as the catalyst begins to age!
- For GT catalysts with \ge 95% NO_X reduction, test at A_V = 35 Nm/hr

Moisture Level

 Difference between lab and field H₂O concentration can make a large difference in activity and full-scale projections

Conditioning Time

- New catalyst needs to be exposed to operating conditions for a long period of time (~8 hours) before reaching activity equilibrium
- Used catalyst does not need as long (~2 hours), but still needs some conditioning

FERCo

• CO Catalyst Tests

- **1.** Measure CO oxidation across the sample simulating full scale conditions (one test)
- 2. Develop a "Light –Off "Curve for the sample
 - Reduced performance can be due to overall deactivation
 - > Or, the light off curve has shifted in the operating temperate range

- VOC Oxidation Tests
 - Oxidation varies with temperature for usual species of interest

TEST METHOD

Testing methodology is dependent on:

1.Catalyst Source Coal / Natural-Gas **2.**Catalyst type SCR/CO **3**.Size Core / Cube / Button

RESULTS & REPORTING

• NO_x Reduction

- Activity, 'K', or NO_X reduction at NH_3 slip
- Can be used for full-scale projections (reactor potential, RP)
- Catalyst life estimates if starting activity/ ΔNO_X and end-of-life conditions are known
- Track deactivation over time with regular testing (often yearly or bi-yearly)
- CO, SO₂, VOC Oxidation
 - Percentage of inlet gaseous species' oxidation
- Chemical Analysis
 - Break-down of bulk and surface chemical composition
 - Useful in determining catalyst poison(s), concentration of active ingredients
- BET Surface Area / Pore-size Distribution
 - Useful in quantifying loss of surface area due to blinding/pluggage
 - Loss of surface area = loss of reactivity, definitely correlated but difficult to tell if it's direct (i.e. 10% area loss = 10% activity loss)

MEASURING K vs. dNOx @ NH3 SLIP

 $K_0 = 85 \text{ Nm/hr}$

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

0

XOND

- Field $A_v = 14$ Nm/hr
- Deactivation = 3% per 10,000 hours

Activity ($A_V = 35 \text{ Nm/hr}$)

- Inlet NOx = 25 ppm
- Outlet NOx = 5 ppm
- NH_3 Slip = 5 ppm

>NOx reduction measurements at NH₃ slip limit does not provide good resolution for high-activity GT SCR catalysts

How is Reactor Potential Used?

"End of Life" Prediction After 1 Year

FERCo

Catalyst Samples After 1 & 2 Years

FULL-SCALE APPLICATION

• Layer-by-Layer Deactivation Tracking

FULL-SCALE APPLICATION

• Life Projections

FULL-SCALE APPLICATION

• NH₃ Slip Projections for Varying Operating Conditions

- Option if lab samples are unavailable or difficult to obtain given outage schedule
 - Tests at actual operating conditions
 - Measurements anytime

- FERCo's CatalysTraK® was originally developed for coal-fired SCR's but can be used in gas-turbine as well
- Similar to the lab approach for SCR catalyst, NO_X reduction is measured across a small cross section (test section) of the catalyst bed
- A small supplemental ammonia injection grid (AIG) is permanently mounted upstream of the test section.

- First 4-years of operation beginning in 2005
 - 700 MW unit
 - E. bituminous coal
 - Two reactors
 - 3 + 1 configuration
- SCR on-line May 2002
- Seasonal operation
- Initial load: 3 layers honeycomb catalyst
- Layer 1 replaced with plate catalyst prior to 2006 ozone season

Volume of Data: Laboratory vs. In Situ

Annual Laboratory Analysis

On-Demand CatalysTrak[™] Measurements

FERCo

CATREACT™

- Co-developed with EPRI
- Comprehensive catalyst management tool mainly multi-layer coal units

E	= (
Ca	se 1	
\langle	Input Buttons	
$\left(\right)$	Unit Data	
\langle	SCR Data	
\langle	Catalyst Data	
\langle	Time Factors	
	Economic Factors	
	Planned Outages	
\langle	Capacity Factors	$\Big)$
\langle	Catalyst Deactivation	
	Output Data	

Unit Name		
Size	MW	400
Heat Rate (HHV)	Btu/kW-hr	9,500
Flue Gas Flowrate	lb/hr	5,386,614
Coal Type	HS Bit	0
	LS Bit	0
	PRB	۲
	Sub Bit	0
	Lignite	0
Coal Sulfur	wt %	0
Coal Arsenic	wt ppm	1
Boiler Produced SO3	ppm	1
Fan Efficiency	%	85
Motor Efficiency	%	95

Unit Data

Flue Gas Flowrate Converter		
Volumetric Flowrate	Mass Flowrate	
scfm	lb/hr	
964916	4500000	

scfm: MW=29.5 lb/lb-mole, T=60 F, P=14.7

Note: To use the converter type the volumetric flow rate into cell C23

Allowable Range				
Low	High			
50	1,300			
7,500	14,000			
450,000	16,000,000			
0	6			
0	100			
0	100			
50	100			
50	100			

CATREACT

- Catalyst replacement by ideal conditions or pertaining to outage schedules
- Scenario development and planning (1+1, 2+1, 3+1, etc.)

Thank You!

Questions? Comments?

Sean A. Bogseth, P.E. Fossil Energy Research Corp. sbogseth@ferco.com (949) 859-4466 www.ferco.com

