
Biomolecules

- All the elements present in earth's crust are also present in living tissue. However, carbon and hydrogen present in relative abundance in living organism.
- Biomolecules Chemicals or molecules present in the living organism. Types-
- Inorganic- minerals, gases and water
- Organic (Carbon & its compound) carbohydrates, fats, proteins, nucleic acids, vitamins, etc.
- Chemical forms- aldehyde, ketones and aromatic compounds.
- Biochemical form- amino acids, nucleotides and fatty acids.

Analysis- Living tissue is made up of Organic compound-

(18-800/1000 Daltons) (800/1000 and above Daltons)

Represents Cytoplasmic Represents Cell wall, cell membrane

Composition Nucleic composition

1 Daltons= 1.66×10^{-27} Kg

Bio-Micro molecules

Non-Polymeric

Amino Acids, Simple Sugar, Nucleotides, Nucleosides, Ions, Glycine etc

Bio-Macromolecules

Polymeric

Polysaccharides, Nucleic Acids (DNA, RNA), Protein, Fats, Collagen, t-RNA, Starch, Insulin etc

Compounds in Earth Crust: O>Si>Ca>Na Human Body: O>C>N>Ca

Analysis of inorganic compound in Living tissue:

Wet Weight- Living Tissue (Vegetable/liver piece)
Dry It Water evaporate

Tissue (dry mass)

Combustion Carbon Compound Oxidised

ELEMENT	% WEIGHT OF			
CLEIVICINI	EARTH'S CRUST	HUMAN BODY		
Hydrogen (H)	0.14	0.5		
Carbon (C)	0.03	18.5		
Oxygen (O)	46.6	65.0		
Nitrogen (N)	Very little	3.3		
Sulphur (S)	0.03	0.3		
Sodium (Na)	2.8	0.2		
Calcium (Ca)	3.6	1.5		
Magnesium (Mg)	2.1	0.1		
Silicon (Si)	27.7	Negligible		

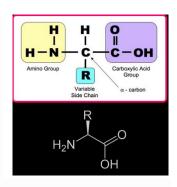
Ash (Contains- Na, K, Ca, Mg, H₂O, NaCl, PO₄⁻³, SO₄⁻² etc)

BIOMICROMOLECULES

Molecules found in living organisms that have low molecular weight (18-800 dalton) and generally found in acid soluble pool.

- 1. Amino Acids
- 2. Lipids
- 3. Simple Sugar
- 4. Nitrogenous Bases

Amino acids- Organic compounds containing an amino group (NH₂), an acidic group (-COOH), a Hydrogen (H) and a Variable R group as substituents on the same (0)-carbon (also called α -amino acids). There are 20 types of Amino Acids.


- Amino acids could be Acidic, Basis, Neural, aromatic, Polar, non-polar etc on the basis of its structure and compound substituted hence called Substituted Methane.
- They could be classified as:
 - **Essential Amino Acid:** Can not be synthesized by body and should be supplied through diet.

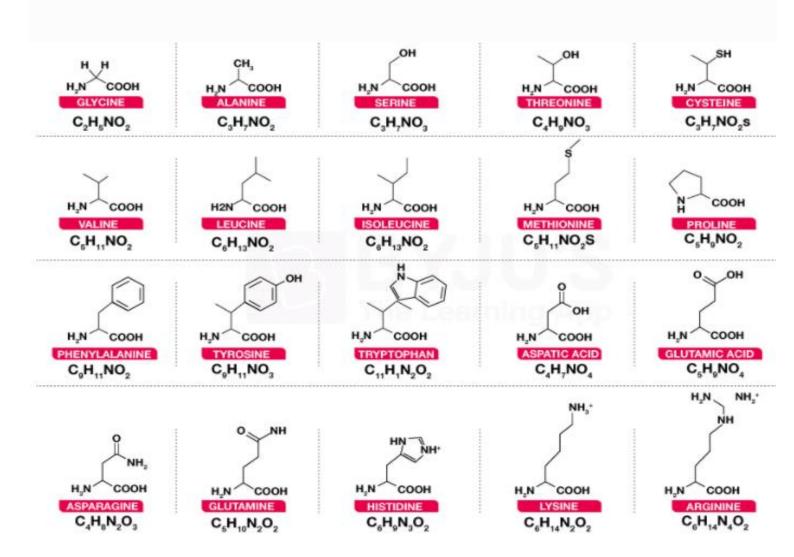
Non-Essential: Can be synthesized by the body.

• Based on R group Amino Acids could be classified as:

Non-	polar/N	leutral	Acidic	Basic	Aromatic
VIP	MLA	G	AG	HAL	PTT

Amino Acid	Abbr.	Class	Polarity	Requirement	CODONS
<u>Alanine</u>	Ala	Aliphatic	Nonpolar Nonpolar	Non-Essential	GCU, GCC, GCA, GCG
<u>Arginine</u>	Arg	Fixed cation	Basic	Conditionally	CGU, CGC, CGA, CGG, AGA, AGG
<u>Asparagine</u>	Asn	Amide	Polar	Non-Essential	AAU,AAC,
Aspartic Acid	Asp	Anion	Acidic	Non-Essential	GAU, GAC
<u>Cysteine</u>	Cys	Thiol	Polar	Conditionally	UGU, UGC
Glutamine	Gln	Amide	Polar	Conditionally	CAA, CAG
Glutamic Acid	Glu	Anion	Acidic	Non-Essential	GAA, GAG
<u>Glycine</u>	Gly	Aliphatic	Nonpolar Nonpolar	Conditionally	GGU, GGC, GGA, GGG
<u>Histidine</u>	His	Aromatic cation	Base	Essential	CAU, CAC
<u>Isoleucine</u>	Ile	Aliphatic	Nonpolar Nonpolar	Essential	AUU, AUC, AUA
<u>Leucine</u>	Leu	Aliphatic	Nonpolar Nonpolar	Essential	UUA, UUG, CUU, CUC, CUA, CUG
<u>Lysine</u>	Lys	Cation	Base	Essential	AAA, AAG
Methionine	Met	Thioether	Nonpolar Nonpolar	Essential	AUG
<u>Phenylalanine</u>	Phe	Aromatic	Nonpolar Nonpolar	Essential	UUU, UUC
<u>Proline</u>	Pro	Cyclic	Polar	Conditionally	CCU,CCC, CCA, CCG
<u>Serine</u>	Ser	Hydroxylic	Polar	Conditionally	AGU, AGC
<u>Threonine</u>	Thr	Hydroxylic	Polar	Essential	ACU, ACC, ACA, ACG
Tryptophan	Trp	Aromatic (indole)	Nonpolar Nonpolar	Essential	UGG
<u>Tyrosine</u>	Tyr	Aromatic	Polar	Conditionally	UAU, UAC
<u>Valine</u>	Val	Aliphatic	Nonpolar Nonpolar	Essential	GUU, GUC, GUA, GUG

Role of some Amino Acid


- i) Glycine Simplest & only amino acid that is optically Inactive.
- ii) Tryptophan- Most complex Indole ring present. Precursor of Auxin.
- iii) Tyrosine- Triggers Melanine, T3 & T4, (thyroxine), Adrenaline, Dopamine

Zwitter Ion- An ionizable amino acid that possess both positive and negative electrical charges. It is electrically neutral. Its structure changes in different pH.

In Acidic Solution

In Basic Solution

