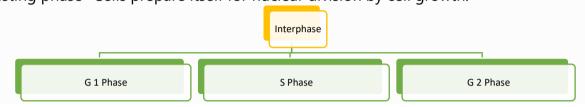
CHAPTER-10 CELL CYCLE AND CELL DIVISION

- The sequence of events by which a cell duplicates its genetic material, synthesizes the other constituents and eventually divides into two daughter cells is called **cell cycle**.
- Cell growth (in terms of cytoplasmic increase) is a continuous process.
- Human cell divides once in approximately 24 hours.
- Vary in different organisms. Yeasts-90 minutes


Phases of Cell cycle

Cell cycle is divided into two basic phases-

1. **Interphase**– Phase between two successive M phases.

Constitute 95% of a cell cycle.

Resting phase- Cells prepare itself for nuclear division by cell growth.

Gap Phase 1	Synthesis Phase	Gap Phase 2	
Cell increases in size	DNA Replication takes place	Cell Growth (Cytoplasmic	
(Cytoplasmic growth)	in nucleus	growth) continues.	
Duplication of Organelles	Centrosomes Duplicates in	Duplication of Organelles	
like ER, Golgi bodies,	Cytoplasm (Animal Cell)	like Mitochondria and	
lysosomes etc.		Plastids	
Length of this Phase Vary-	DNA doubles per cell and	Protein synthesis in	
Longest Phase	chromosomes no. remain	preparation for mitosis.	
	same.		
Cell remains metabolically		Increased metabolic rate.	
Active			
RNA, Protein and Enzyme		Spindle fibres and asters are	
(Used during M phase)		formed	
synthesise (in same			
sequence).			

Some cells in adult animals cell exit G1 phase and enter inactive G₀ phase. Ex: Heart cell.

Quiescent Stage (G_0)- Cell do not proliferate (divide) but remain metabolically.

Cell can exit G₀ and resume G1 phase whenever required (in case of injury or cell death) so.

M Phase-Mitosis (actual cell division) termed as Equational division (Chromosomes number same in parental & progeny cells.)

Karyokinesis (nuclear division) generally followed by cytokinesis (cytoplasm division).

In animals mitosis is present in only somatic diploid cells (exception few insects like male honey beedrone) but in plants it is seen in both haploid and diploid cells.

Prophase -first & longest phase followed by G2 phase.

- 1. Initiation of condensation of chromosomal materials.
- 2. Chromosomes composed of two chromatids.

- 3. Centrioles move towards opposite poles & radiates out microtubules called asters.
- 4. Endoplasmic reticulum, Golgi complex & nuclear membrane disappears.

Metaphase

- 1. Nuclear membrane completely disappears.
- 2. Condensation complete chromosomes clearly visible (Best stage for morphology of chromosomes)
- 3. Two sister chromatids attached with spindle fibres with kinetochores (disc-shaped structures at the surface of centromeres of chromosomes)
- 4. Chromosomes moves & gets aligned to metaphase plate/spindle equator through spindle fibres from both the poles.

Anaphase

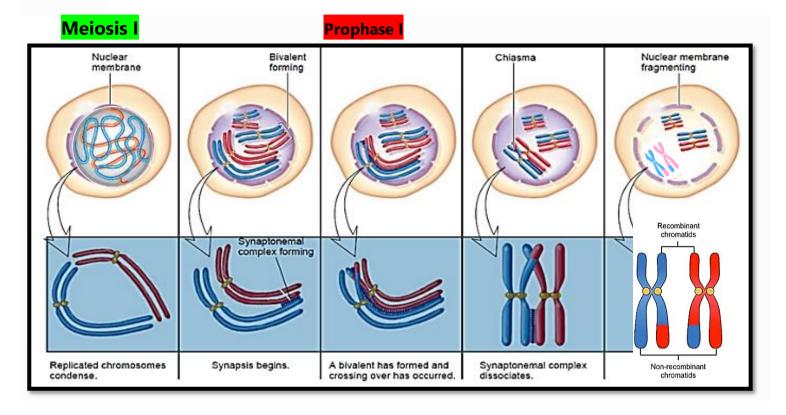
- 1. Two sister chromatids splitting off from each chromosome & now referred as daughter chromosomes.
- 2. Two chromatids start moving towards opposite poles.
- 3. Centromere leads towards poles and arms tailing behind

Telophase - last stage

- 1. Chromosomes reach at opposite poles and loose its identity as discrete unit.
- 2. Nuclear membrane reappears around the chromosomes.
- 3. Nucleolus, Golgi complex and ER reappear.

Cytokinesis -division of cytoplasm after karyokinesis (division of nucleus) into two daughter cells.

- In some organisms karyokinesis is not followed by cytokinesis results in multinucleate condition- forms syncytium (e.g. liquid endosperm in coconut).
- **In animal cells** appearance of furrows in plasma membrane that deepens gradually and joins to divide cytoplasm into two parts.
- **In plant cells** Wall formation starts at the centre and grows outwards to meet lateral walls. The formation of cell wall begins with formation of **cell plate** that represent middle lamella.


Significance of Mitosis

- 1. Mitosis occur in diploid cells & produces diploid daughter cells with identical genetic complement.
- 2. Some lower plants and some social insects' (like male honey bee-drone) haploid cells also divide by mitosis.
- 3. Helps in repair of cells, especially in lining of gut and blood cells.
- 4. Meristematic division in apical and lateral cambium results in continuous growth of plants.

Meiosis- Reductional Division

- Chromosomes no. reduce to half- form haploid daughter cells.
- Occur in diploid germ cell to form haploid gametes in sexually reproducing organisms, diploid phase is restored by fertilization.
- Two sequential cycles of nuclear and cell division called meiosis I and meiosis II but single cycle of DNA replication.
- It involves pairing of homologous chromosome and recombination between non-sister chromatids.
- Four haploid cells are formed at the end of meiosis II.
- Initiate after parental chromosomes have replicated to produce identical sister chromatids at the S phase.

Meiosis I	Meiosis II
• Prophase I	• Prophase II
Metaphase I	Metaphase II
• Anaphase I	• Anaphase II
• Telophase I	• Telophase II

Leptotene	Zygotene	Pachytene	Diplotene	Diakinesis
Chromosomes	Homologous	Chromosomes	Dissolution of the	Terminalisation of
gradually visible	chromosomes start	becomes distinct &	Synaptonemal	chiasmata
Under light	pairing- <mark>synapsis</mark>	clearly appears as	complex	
microscope.		tetrads		
Compaction of	Accompanied by	Crossing over	Bivalents to separate	Chromosomes are
<u>chromosomes</u>	<mark>synaptonemal</mark>	(exchange of genetic	from each other	Fully condensed
<mark>continues</mark>	<mark>complex.</mark>	Materia) occurs	Except at the sites of	
		between <mark>non-sister</mark>	crossovers- x-shaped	
		chromatids of the	structures, called	
		homologous	<mark>Chiasmata.</mark>	
		chromosomes.		
Short lived stage	Complex formed	Enzyme-	In oocytes of some	Meiotic spindle is
	called	mediated process-	vertebrates,	prepare for
	Bivalent/Tetrad	recombinase	diplotene can last	separating
			for Months or years.	homologous
				chromosomes
	Short lived stage	Recombination		Nucleolus and cell
		completed leaving		organelles disappears
		the		and the nuclear
		chromosomes linked		envelope also breaks.
		at the sites of crossing		Transition to
		over.		Metaphase

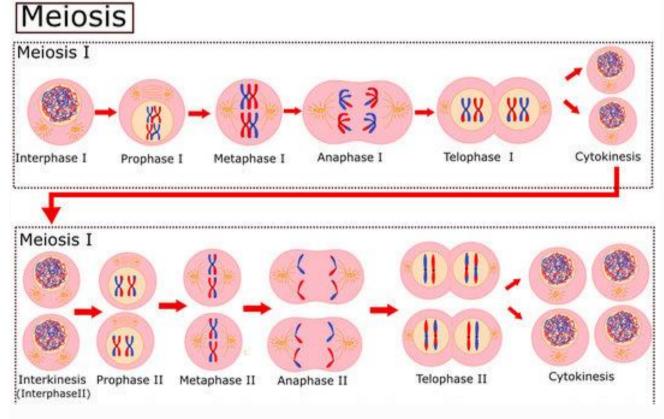
Metaphase I

- Bivalent chromosome align at equatorial plate,
- Microtubules from the opposite poles of the spindle get attached to kinetochore of homologous chromosomes.

Anaphase I

- Homologous chromosome separate but sister chromatids remain attached at centromere.
- Homologous chromosomes moves to opposite pole.

Telophase I


- Nuclear membrane and nucleolus and cell oragnelles reappear.
- Chromosomes starts losing their individual identity.

Cytokinesis

- Furrow divides the cytoplasm forming a dyad of cells
- In many cases the chromosomes do undergo some dispersion, they do not reach the extremely extended state of the interphase nucleus.

Interkinesis

- Stage between two meiotic divisions, generally short lived.
- No replication of DNA.
- Followed by prophase II.

Meiosis II

Prophase II

- Starts before chromosome gets fully elongated.
- Nuclear membrane disappears and chromosome becomes compact.

Metaphase II

- Chromosomes align at equator.
- Microtubules attach with kinetochores of sister chromatids.

Anaphase II

- Splitting of chromosome from centromere.
- Sister chromatin (now referred as Chromosomes) to move towards opposite poles by shortening of microtubules

Telophase II

- Two groups of chromosomes get enclosed by nuclear membrane.
- Nucleolus and cell organelles reappear.
- Chromosomes starts losing their individual identity.

Cytokinesis

• Furrow divides the cytoplasm of forming a tetrad of cells (four haploid daughter cells).

Significance of meiosis-

- 1. Forms the haploid gametes by reduction of chromosomes no. to half that are essential for sexual reproduction.
- 2. Crossing over introduces new recombination of traits leading to genetic variability hence leads to Evolution.
- 3. Helps in maintenance of chromosome number of sexually reproducing organism.
- 4. Provides evidence of basic relationship of organisms.