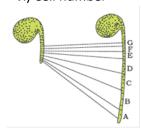

PLANT GROWTH & DEVELOPMENT

- All plants cells are descendants of the zygote. Root, stem, leaves, flowers, fruits and seeds arise in orderly manner in plants.
- Plants complete their vegetative phase (Juvenile) to move into reproductive phase in which flower and fruits are formed for continuation of life cycle of plant.
- **Development** is the sum of two processes **growth** and **differentiation**. Intrinsic and extrinsic factors control the process of growth and development in plants.
- Growth is irreversible/permanent increase in dry weight, size, mass or volume of cell, organ or organism. It is internal or intrinsic in living beings. Result of anabolism.
- In plants growth is accomplished by cell division, increase in cell number and cell enlargement. So, growth is a quantitative phenomenon which can be measured in relation to time.
- Plant growth continues throughout the life due to presence of Meristematic tissue (dividing capacity) present at the certain region of plant.
- The growth in which new cells are always being added to plant body due to meristem is called open form of growth.

- Primary growth (increase in length):
 - i) Apical Meristem: Present at Root and shoot apex causes elongation of plant along their axis.
 - Intercalary meristem -Located at base of internodes produce buds and new branches in plants. ii)
- Secondary meristem (Increase in Grith):
 - iii) Lateral Meristem – vascular cambium & cork cambium increases grith of plant.


Growth is measurable

At cellular level, growth is increase in protoplasm (difficult to measure).

Parameter of Growth (Increase in):

- Fresh weight ii) Length
- iii) Dry weight
- iv) Volume
- v) Area
- vi) Cell number

- - Cell Number- Apical meristem of Maize root produces more than 17,500 new cells per hour.
 - Cell Size- Watermelon cells increase in size by 3,50,000 times.
 - Length- Growth of Pollen Tube
 - Surface Area- Growth in dorsi-ventral leaf.

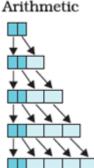
Formative/ Meristematic phase	Phase of Elongation/Enlargement	Phase of Maturation
It occurs at root/shoot apex.	Present just next to meristematic zone.	Away from meristematic, next to
Cells have rich protoplasm and large	Cell enlargement, large vacuole, and	elongation zone.
nuclei.	new cell wall deposition.	Undergo structural & physiological
Cell wall are primary, thin &	Maximum elongation in conducting	differentiation.
cellulosic with abundant	tissues and fibres.	Cells attain their maximum size,
plasmodesmata.		wall thickening & protoplasmic
The rate of respiration is high & cell		modifications.
undergo mitosis.		

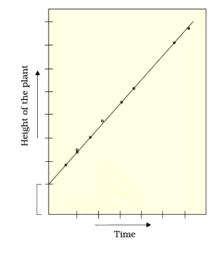
Growth Rate

Increase in growth per unit time is called growth rate. Growth rate may be arithmetic or geometrical.

Arithmetic Growth- Rate is constant & increase in growth occurs in arithmetic progression- 2,4,6,8 Found in root and shoot elongation.

In this following mitotic division only one daughter cell continues to divide while other differentiates and mature.


$$L_t = L_0 + rt$$


L_t = Length after time

L₀ = length at beginning

r = growth rate

t = time.

Geometric Growth- Here initial growth is slow & increase rapidly thereafter.

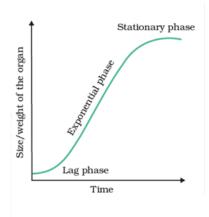
Every cell divides that result into exponential growth.

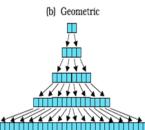
Common in unicellular organisms when growing in nutrient rich medium.

Characteristic of living organism growing in a natural environment.

Sigmoid growth curve consists of fast dividing exponential phase and stationary phase.

 W_1 = Final size


 W_0 = initial size,


r = growth rate

t = time of growth

e = base of logarithms

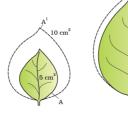
(2.71828).

Quantitative comparison between the growth of living system:

1. Absolute growth rate: Measurement and comparison of total growth per unit time.

Eg: Absolute rate = Final growth - initial growth.

$$10cm^2 - 5cm^2 = 5cm^2$$


$$55cm^2 - 50cm^2 = 5cm^2$$

2. Relative growth rate- The growth of given system per unit time expressed on a Relative Rate= Final - Initial common basis.

$$\frac{10\text{cm}^2 - 5\text{cm}^2}{5\text{cm}^2} = 1\text{cm}^2 \text{ or } 100\%$$

$$\frac{55\text{cm}^2 - 50\text{cm}^2}{50\text{cm}^2} = \frac{1\text{cm}^2}{10} \text{ or } 10\%$$

Condition for growth

- Water -For cell enlargement and maintaining turgidity. Medium for enzymatic activities & protoplasm formation
- **Temperature:** Require optimal temperature for maximum growth.
- Oxygen: To release metabolic energy for growth.
- Nutrients: Macro & Micro nutrients needed as a source of energy.
- **Light & Gravity:** Affect certain phases of growth.