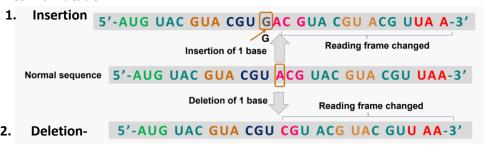
Genetic Code

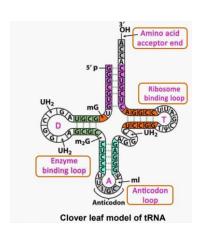
- DNA Replication & transcription depend upon Complimentary Base pairing but mRNA (nucleotide) & protein (amino acid) have no direct relation.
- Sequence of codon (3 bases code) present in mRNA give sequence of amino acid.
- Any change in DNA can change Protein.
- There are 64 codons, where 61 code for amino acids & rest 3 are known as stop codons, as they do not code for any amino acid.

Scientist from different field:			
George Gamow	Suggested (theoretically) that coding	Codon was a Nucleotide Triplet.	
(Physicist)	for 20 amino acids should be made	$4^3 = (4 \times 4 \times 4) = 64$ codons	
	up of 3 nucleotides.		
Har Gobind Khorana	Develop the chemical method in	Homopolymer:	
(Bio-Chemist)	synthesizing RNA molecules with	5'-UUUUUUUUUUU-3'	
	defined combination of bases (Co-	Co-polymer	
	polymer or Homopolymer)	5'-AUAUAUAUAUA-3'	
Marshall W. Nirenberg	Develop cell free system of protein	UUU- (Phenylalanine)	
(Biochemist and Geneticist)	synthesis that help code to be	First amino acid decipher.	
	decipher (read).		
Severo Ochoa	Discovered Severo Ochoa enzyme in	Enzyme Isolate from bacteria	
(Physician & Biochemist)	1955 that can join nucleotides in	Polynucleotide Phosphorylase	
	Template Free RNA Synthesis		


Salient features of Genetic Code			
Unambiguous	One Codon code for one amino acid.	Ex-GUG-only code for valine	
Degenerate	Some amino acid code by more than one codon.	Ex- GAG, GAA both code for Glutamic Acid.	
Universal	Code would be same from bacteria to human.	Ex: UGG- Tryptophan	
	Exception: mitochondrial codon, protozoans		
No Punctuation	Codon are read in mRNA in continuous fashion.	AUGUUUUUCUUCUUC	
Start Codon	Initiation the process.	AUG- (Methionine)	
Stop Codon	Terminate the process.	UAA, UGA, UAG	

Mutations and Genetic Code

A change in the single base pair causes point mutation.


1. Substitution – Ex: Sickle cell anaemia- Glutamic Acid (GAG) to Valine (GUG)

Frameshift Mutation

tRNA- The Adapter Molecule

- Francis Crick postulated presence of an adapter molecule that can read the code to link with amino acids.
- Its secondary (2D) structure that looks like clover leaf while its 3D structure looks like inverted L.
- tRNA called sRNA (soluble RNA), was known before the genetic code was postulated.

- tRNA are specific for each amino acid.
- There are no TRNA for Stop Codon.
- **Anticodon loop:** Has bases complementary to the codon.
- > Amino Acid Acceptor end- Amino Acids bind here.
- Ribosome binding Loop- Binds to Ribosome
- Enzyme binding Loop- Binds to Enzyme

Translation

It is the process of amino acid polymerisation to form polypeptide.

The translation process is in the $5' \rightarrow 3'$ direction always.

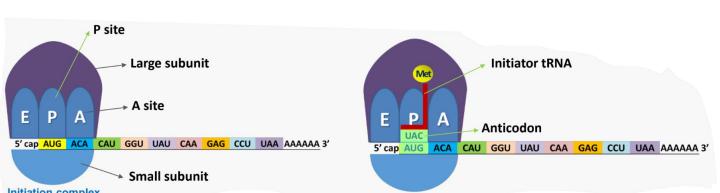
All three RNAs(mRNA, tRNA and rRNA) have a different role in the process of translation.

Amino Acid joint by peptide bond.

Ribosomes are a protein manufacturing factory, Ribozyme (23 sRNA in Bacteria) act as a catalyst in the formation of a peptide bond. There P site and A sites in the large subunit of a ribosome accommodate two tRNAs with amino acids close enough to form a peptide bond.

Charging of tRNA (Aminoacylation):

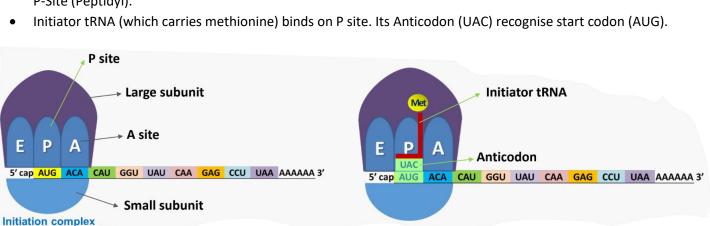
Formation of peptide bond needs energy hence needs energy Amino Acids + ATP link to tRNA in presence of aminoacyl tRNA synthetase.

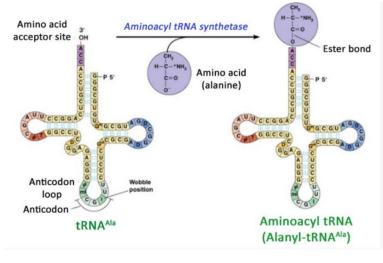

1. Initiation:

- Small Subunit of ribosome binds to mRNA at the start codon (AUG).
- Large subunit of ribosome binds to small subunit to form initiating complex.
- Large subunit consist of A- Site (Aminoacyl) and P-Site (Peptidyl).

Peptidyl transferase

CAU GGU UAU CAA GAG CCU UAA AAAAAA 3'

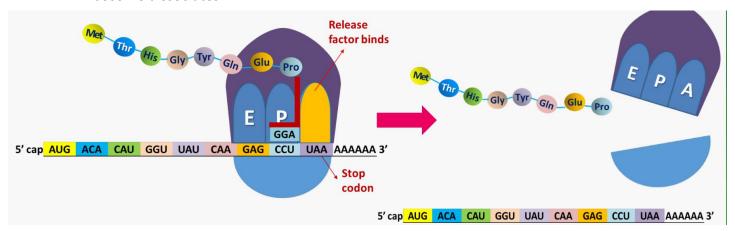

Peptide bond



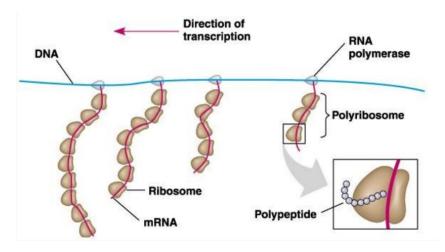
2. Elongation:

Thi

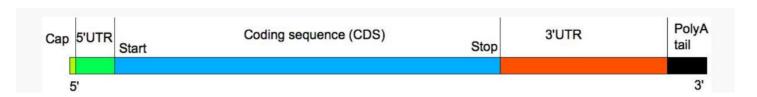
Second onwards tRNA binds to A site. Its anticodon binds to second codon on mRNA and forms peptide bond between amino acid with the help of **peptidyl transferase**.


Thr His - Gly Tyr Gln

5' cap AUG ACA CAU GGU UAU


- First amino acid from P site exit from E site and next tRNA from A site moves to P site along with mRNA and the process is called translocation.
- Ribosomes moves from codon to codon.

3. Termination:


- No tRNA binds to Stop codon as the do not code for any amino acid.
- When Release factor binds to stop codon, the translation terminates releasing chain of amino acids
- Ribosome dissociates

Polyribosome (polysome): Group of ribosomes associated with a single mRNA for translation.

UTR- Untranslated region on mRNA. Present on both 5' and 3' ends.

