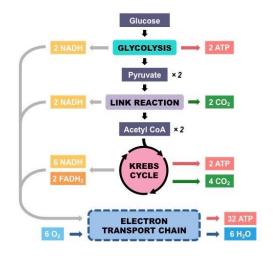

Fermentation

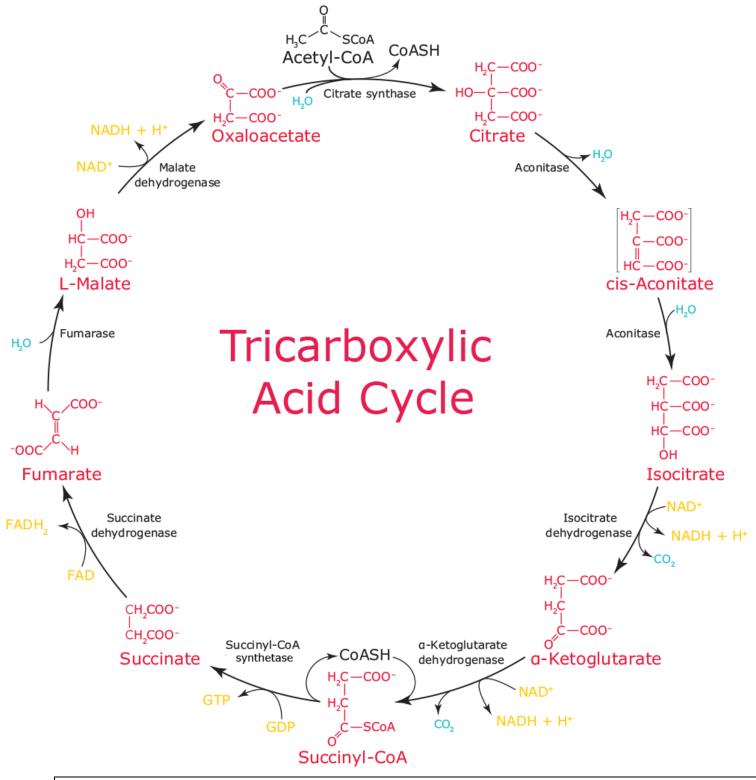
• In animal cells, like muscles during exercise, when oxygen is insufficient for aerobic respiration, pyruvic acid is reduced to **Lactic acid** by enzyme lactate dehydrogenase due to reoxidation of NADH₂ to NAD⁺

- In fermentation by yeast, pyruvic acid is converted to Ethanol and CO2. The enzyme involved is pyruvic acid decarboxylase and alcohol dehydrogenase catalyse this reaction.
- In both lactic acid and alcohol fermentation very less amount i.e. less than 7% of energy (2ATP only) in Glucose is released & the processes are hazardous.
- Yeasts poison themselves to death if concentration of alcohol reaches above 13%.
- All naturally fermented beverages contain maximum up to 13% alcohol concentration.
- Alcoholic beverages greater that 13% concentration are obtained through fractional distillation.


SN	Beverages	Concentration	Fermentation of Substrate
1	Beer	4-6%	Barley, wheat etc
2	Wine	10-13%	Fruits (grapes)
3	Champagne	12-13%	Grapes
4	Whisky	40-60%	
5	Vodka	35-90%	Distillate Drinks
6	Rum	40-80%	from Wheat,
7	Brandy	40-80%	Barley, fruits etc
8	Tequila	40-80%	

Aerobic Respiration

• Final product of glycolysis, pyruvate is transported from the cytoplasm into mitochondria for further breakdown.


Link Reaction- Take place in matrix of mitochondria

- Pyruvate (3C) oxidised to Acetyl-CoA (2C) to produce CO2 and NADH₂.
 Catalysed by pyruvic dehydrogenase & Coenzymes including NAD+ participate.
- Acetyl CoA enters a cyclic pathway called TCA cycle or Kreb's cycle.

$$Pyruvic\; acid + CoA + NAD^{+} \xrightarrow{Mg^{2+}} Acetyl\; CoA + CO_{2} + NADH + H^{+}$$

Tricarboxylic Acid (TCA) Cycle /Krebs Cycle : Discovered by Hans Krebs in 1940. Also known as citric acid cycle as first product is citric acid.

Trick to Learn							
Can	Citrate		Clever	Citrate Synthetase			
Competent	Cis- Aconitate	Kerb's / TCA	Ants	Aconitase			
Intelligent	Isocitrate	Cycle	And	Aconitase			
Karan	Alpha-ketoglutaric Acid		Intelligent	Isocitrate dehydrogenase			
Solve	Succinyl CoA		Kangaroo	A-ketoglutarate dehydrogenase			
Some	Succinate		Swiftly	Succinyl CoA Synthetase			
Foreign	Fumerate		Skip	Succinate dehydrogenase			
Mafia	Malic Acid		Fun	Fumarase			
Operation	OxaloAcitic Acid		Mountains	Malate Dehydrogenase			

```
Step 1: Condensation or Formation of Citrate
```

Acetyl-CoA (2C) + Oxaloacetate (4C) Citrate Synthase Citrate (6C)

Step 2: Isomerization of Citrate to Isocitrate

Citrate (6C) Aconitase / Fe^{++} Cis-Aconitate (6C) Aconitase / Fe^{++} Isocitrate (6C)

(Cis- Aconitate is an intermediate product formed by removal of water and gets converted in Isocitrate by addition of water)

Step 3: Oxidation Decarboxylation of Isocitrate to Alpha-Ketoglutarate

Isocitrate (6C) + NAD⁺ Isocitrate Dehydrogenase / Mn⁺⁺ Alpha-Ketoglutarate (5C) + NADH + H⁺ + CO₂

(Oxalosuccinate is an intermediate product formed during the reaction)

Step 4: Oxidation Decarboxylation of Alpha-Ketoglutarate to Succinyl-CoA

Alpha-Ketoglutarate (5C) + NAD⁺ + CoA <u>α-Ketoglutarate Dehydrogenase</u> Succinyl-CoA (4C) + NADH + H⁺ + CO₂

(α -Ketoglutarate Dehydrogenase complex contains Thiamine Pyrophosphate (TPP), Lipoic acid, Mg⁺⁺ and transsuccinytase)

Step 5: Substrate-level phosphorylation of Succinyl-CoA to Succinate

Succinyl-CoA (4C) + GDP + Pi Succinyl-CoA Synthetase Succinate (4C) + GTP + CoA

Step 6: Dehydrogenation or Oxidation of Succinate to Fumarate

Succinate (4C) + FAD Succinate Dehydrogenase Fumarate (4C) + FADH₂

Step 7: Hydration of Fumarate to Malate

Fumarate (4C) + H₂O Fumarase Malate (4C)

Step 8: Dehydrogenation or Oxidation of Malate to Oxaloacetate

Malate (4C) + NAD⁺ Malate Dehydrogenase Oxaloacetate (4C) + NADH+ H⁺

Combined Reaction (Link & Krebs Cycle) for one molecule of Pyruvate

Pyruvate + $4NAD^+ + FAD^+ + 2H_2O + GDP + Pi \xrightarrow{Mitochondrial Matrix} 3CO_2 + 4 NADH + 4H^+ + FADH_2 + GTP$

Glycolysis 2 ATP directly = 2 ATP

2 molecules of = 6 ATPTotal 8 ATP

NADH

Pyruvic acid to 2 molecules of = 6 ATP

acetyl Co-A NADH

Citric acid 6 molecules of = 18 ATP

cycle NADH

2 molecules of = 4 ATP

FADH

Total 24 2 molecules of = 2 ATP

GTP.

38 ATP

Total