MORPHOLOGY IN FLOWERING PLANTS

Morphology: The study of external structure (form, size, structure, colour, and external features) of an organisms.

Angiosperms: also called flowering plants. Most diverse and advanced group of plants.

Parts of a Flowering Plant

A typical angiosperm has:

1. Underground Part - Root System

• Primary roots, secondary roots, tertiary roots, root hairs, etc.

2. Aerial Part - Shoot System

• Above ground part includes stem, leaves, buds, flowers, fruits.

3. Reproductive Part

Flower, fruit, seed

4. Vegetative Part

Leaf, stem, roots, tendrils, etc.

Apical bud (terminal bud) Petiole Petiole Shoot system Internode Node Stem Lateral root Primary root Root system

Root System

General Features:

- Underground part that develops from radicle of the plant.
- It is non-green and non-photosynthetic.
- Nodes and internodes are absent.
- It shows:
 - Positive geotropism
 - Positive hydrotropism
 - o Negative phototropism

Types of Roots

1. Tap Root System

- Found in dicotyledonous plants.
- Consists of primary root and its lateral branches (secondary and tertiary roots).
- Primary root arises from the radicle and persists.
- Examples: Mustard, Gram

2. Fibrous Root System

- Found in **monocotyledonous** plants.
- Develops from the base of the stem.
- Primary root is short-lived and replaced by a large number of adventitious roots.
- Examples: Wheat, Paddy, Maize

3. Adventitious Root System

- Roots develop from parts other than the radicle.
- Examples: Grass, Banyan, Sweet Potato

1. Root Cap

- Thimble-like structure at the root tip.
- Helps penetrate deep into soil and protects meristem.
- Present in primary root, absent in lateral roots.
- Regenerates if damaged.
- In aquatic plants, root pockets are present instead of root cap.

2. Meristematic Zone

- Cells divide actively.
- Cells have dense cytoplasm, prominent nucleus, and thin walls.
- Gives rise to both root cap and region of elongation.

3. Zone of Elongation

Cells elongate and increase the root's length.

4. Zone of Maturation

- Cells differentiate and mature.
- Root hairs appear here.

5. Root Hairs

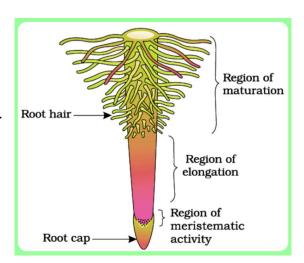

- o Very fine, unicellular, thread-like extensions from epidermal cells.
- Absorb water and minerals from the soil.

Note: Root Caps are absent in lateral roots and Aquatic plants have root pockets instead of root cap.

Functions of Roots

- Anchorage Fixes the plant in the soil.
- **Absorption** Water and mineral uptake.
- Conduction Transport to the stem.
- **Storage** In some plants (e.g., carrot).
- Hormone Production Produces growth hormones like cytokinins.
- Vegetative Propagation In species like sweet potato.
- Soil Erosion Prevention Binds soil particles.
- Symbiotic Associations With Rhizobium (N-fixation) or mycorrhiza.
- **Respiration** Pneumatophores help in gas exchange.
- Aerial Absorption Epiphytic roots absorb moisture from air.

Conical root



Modifications of Roots

A. Tap Root Modified for Food Storage

S.N.	Туре	Feature / Shape	Examples
1.	Conical	Cone-shaped, broad at base, tapering downward	Carrot
2.	Fusiform	Spindle-shaped, middle swollen, tapered ends	Radish
3.	Napiform	Top round, bottom tapering like a tail	Turnip, Beetroot

B. Adventitious Roots Modified for Food Storage

Туре	Feature / Shape	Examples
Tuberous	Irregular swollen single roots	Sweet Potato
Fasciculated	Clustered tuberous roots at base	Dahlia, Asparagus
Nodulose	Root tips swell into nodules	Roots in Turmeric, Mango,ginger

C. Roots Modified for Mechanical Support

Type Feature / Function		Examples
Prop Roots	Hanging or pillar-like roots from branches for support	Banyan
Stilt Roots	Oblique roots from lower nodes for anchorage	Maize, Sugarcane
Climbing Roots	Roots help climbing by attaching to support	Grapevines, Money Plant

D. Roots Modified for Special Functions

Function	Type/Name	Description	Example(s)
Respiration	Pneumatophores		Rhizophora (Mangroves)
Aerial Absorption	Epiphytic Roots	Spongy velamen tissue absorbs moisture from air	Vanda, Orchids
Symbiosis	IMvcorrhizal Roots	Fungal association, enhances mineral uptake (esp. phosphorus)	Pinus, Orchids
Parasitism	,, ,, ,	•	Cuscuta, Orobanche
Vegetative Propagation	Reproductive Roots	, ,	Sweet Potato, Dalbergia
Photosynthesis	Photosynthetic Roots	Green roots perform photosynthesis	Trapa, Tinospora

The Stem

General Features:

- Arises from the **plumule** of the embryo.
- Generally erect, green (young), and cylindrical.
- Has **nodes** (points where leaves arise) and **internodes** (space between nodes).
- Bears leaves, buds, flowers, fruits.
- Usually aerial and positively phototropic.

Functions of the Stem:

- **Support** Bears branches, leaves, and flowers.
- Conduction Transports water and minerals from roots to aerial parts and food from leaves to other parts.
- Storage In potato, turmeric.

- **Photosynthesis** Green stems (e.g., Euphorbia).
- Vegetative propagation Sugarcane, Mint, Jasmine.

Modifications of Stem

A. Underground Stem Modifications

Used for **perennation**, **food storage**, **vegetative propagation**.

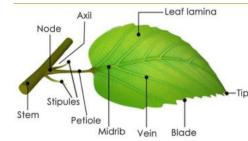
Туре	Features	Examples
Rhizome	Horizontal stem, thick, fleshy with nodes & internodes	Ginger, Turmeric
Tuber	Terminal part of underground stem swells to store food; has eyes	Potato
Corm	Short, vertical, solid, swollen base with nodes	Colocasia, Amorphophallus
Bulb	Condensed stem with fleshy leaves	Onion, Garlic

B. Subaerial Stem Modifications

Used for vegetative propagation, spreading.

Туре	Features	Examples
Runner	Long internodes; creeps on surface	Grass, Oxalis
Stolon	Grows horizontally, then curves upward	Strawberry, Jasmine
Sucker	Arises from underground base; grows obliquely	Chrysanthemum, Banana
Offset	Short, thick internode, forms new rosettes	Pistia, Eichhornia

C. Aerial Stem Modifications


Adapted for protection, support, photosynthesis, and food storage.


Туре	Features	Examples
Stem Tendrils	Slender, spirally coiled for climbing	Cucumber, Passionflower
Stem Thorns	Hard, woody, pointed outgrowths for defense	Citrus, Bougainvillea
Phylloclade	Flattened or cylindrical green stem for photosynthesis	Opuntia, Euphorbia

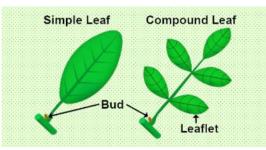
• The Leaf: It is lateral, flattened, photosynthetic structure develop from the node of the stem.

It is always arises from Apical Bud (Shoot apical meristem) & arranged in acropetal manner.

It bears a bud (Axillary bud) in its axil which later develops into a branch. It has 3-Main parts:

- a) Leaf base (Hypopodium): Part of leaf attached to stem
 In Dicot leaf it may bear two later outgrowth called stipules.
 In some leguminous plans leaf base may become swollen called Pulvinus.
- **b) Petiole** Thin flexible stalk by which leaf is connected to stem.
- **c)** Lamina (leaf blade) The green expanded part with veins & midrib. Veins provide rigidity and act as channel to transport.

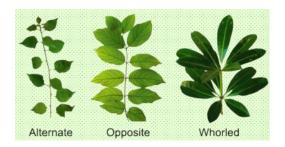
Types of Leaves


A. Simple Leaf

• Lamina is entire or incision do not touch the midrib, and not divided into leaflets. **Example**: Mango

B. Compound Leaf

- When incision of lamina reaches up to midrib & Lamina is divided into leaflets.
- A bud is seen in axil of leaflets of simple and compound leaf but not on leaflets.


Туре	Features	Examples
Pinnately Compound	Leaflets arise along common axis (Rachis-represents Midrib)	Neem
Palmately Compound	Leaflets arise from a single point at tip of petiole	Silk Cotton

Phyllotaxy – Leaf Arrangement on Stem

Туре	Description	Example
Alternate	, ,	China Rose, Mustard, Sunflower
	Pair of leaves arises at each	Guava, Calotropis
Whorled	More than two leaves per node.	Alstonia

Leaf Modifications

Modification	Purpose	Examples
Tendrils	Climbing	Pea
Spines	For defense, & to prevent transpiration loss.	Cactus
Fleshy	Storage food	Onion, Garlic
Insectivorous	Trapping insects	Pitcher plant, Venus flytrap
Reproductive	Vegetative propagation	Bryophyllum

Venation: Arrangement of veins & vein lets in the leaf lamina.

Types: 1) Reticulate: Veinlets forms a network. Seen in Dicots

2) Parallel: Veins run parallel to each other. Seen in Monocots.

A Flower is a modified shoot where in the shoot apical meristem changes to floral meristem.

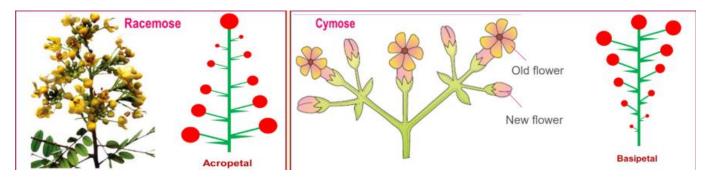
Internodes do not elongate and the axis gets condensed & the condense node produces whorls (floral appendages).

Solitary: When a shoot tip is transformed into a single flower. Ex: China Rose, <u>Lily.</u>

Inflorescence: Arrangement of cluster of flowers on the floral axis (peduncle).

Types of Inflorescence

A. Racemose


- Main axis grows continuously.
- Acropetal succession older flowers at base, younger towards apex.

Ex: Maize, Mustard, Radish, Sunflower, Colocasia, Pineapple

B. Cymose

- Main axis terminates in a flower.
- Basipetal succession older flowers at apex, younger below.

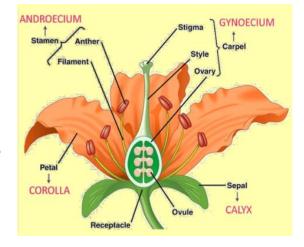
Ex: Jasmine, Bougainvillea, Calotropis

The Flower

Definition:

Modified condensed shoot, for reproduction.

A typical flower has 4 – Whorls (Parts):


Accessory Whorls

- 1. Calyx (Collection of Sepals) Outer green, protective
- Corolla (Collection of Petals) Colourful, attract insects

Essential/Reproductive Whorls

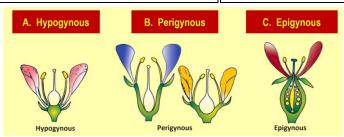
- 3. Androecium (Collection of Stamens) Male part
- 4. **Gynoecium (Collection of Pistil/Carpels)** Female part

Bracteate: The flowers that possess a small, leaf-like structure called a *bract* at the base of the flower stalk (pedicel). Ex: mustard, china-rose

Ebracteate flowers are those which lack bracts. Ex: Mustard, Datura, Lily

Floral Symmetry

Туре	Description	Example	
Actinomorphic	Radial	(MCD) Mustard, Chilli,	
Actinomorphic	symmetry	Datura	
Zugomorphic	Bilateral	(Pe, Gu, Be, Ca) Pea,	
Zygomorphic	symmetry	Gulmohar, Bean, Cassia	
Asymmetric	No symmetry	Canna	



Flower Types

Term	Description	Example(s)
Bisexual	Both androecium and gynoecium	Hibiscus, Mustard, Datura
Unisexual	Either androecium or gynoecium	Papaya, Corn, Cucumber
Complete	All four floral whorls	Datura, Mustard, Hibiscus
Incomplete	One or more floral whorls missing	Grass (no petals), Papaya (unisexual)
Hypogynous	Ovary superior; other floral parts below ovary	Mustard, China rose , Brinjal
Perigynous	Ovary half-inferior; floral parts	Rose, Peach, Plum
Epigynous	Ovary inferior; floral parts above the ovary	Guava, Cucumber, Apple

Flower Types on the basis of number of appendages:

Trimerous	Floral Appendages in multiple of three. (Common in Monocot)	Lily, Tulip, Onion
Tetramerous	Floral Appendages in multiple of four. (Common in Dicot)	Mustard, Radish, Turnip
Pentamerous	Floral Appendages in multiple of five. (Common in Dicot)	China rose, Pea, Dhatura

