[4]

Choose the correct alternative. Q.1. A.

- Which of the following triplets will not form a right angled triangle?
- (A) (5, 12, 13)
- (B) (8, 15, 17)
- (20, 10, 11)(C)
- (D) (9, 40, 41)
- In $\triangle POR$, $\angle O = 30^{\circ}$, $\angle R = 90^{\circ}$ and the length of the hypotenuse is 20 cm. What will be ii. length of QR?
 - (A) 10 cm
- (B) $10\sqrt{3}$ cm
- (C) $10\sqrt{2}$ cm
- If the length of the diagonal of a square is 16 cm, then its perimeter will be iii.
- $32\sqrt{2}$ cm (B)
- 64 cm (C)
- (D) $64\sqrt{2}$ cm
- In $\triangle PQR$, $\angle Q = 90^{\circ}$ and $QS \perp PR$. If PS = 32 cm, SR = 8 cm, then QS =iv.

- (A) 8 cm
- $2\sqrt{10}$ cm (B)
- 16 cm (C)
- 40 cm (D)

- O.1. B. Solve the following questions. (Any one)
 - Find the diagonal of a rectangle having length and breadth 12 cm and 8 cm respectively. i.
 - In $\triangle ABC$, AP is a median. If AP = 7, $AB^2 + AC^2 = 260$, then find BC. ii.
- Complete the following activities. (Any one) Q.2. A.

[2]

[2]

For finding AB and BC with the help of information given in the adjoining figure, complete the following activity.

Solution:

$$AB = BC$$

- $\angle BAC = \angle BCA$
- ∠BAC = ٠.
- $AB = BC = \times AC$
- AB = BC =*:*.

[Isosceles triangle theorem]

[Theorem of $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle]

- In $\triangle ABC$, $\angle ACB$ is an obtuse angle, seg AD \perp seg BC. Prove that: $AB^2 = BC^2 + AC^2 + 2BC \times CD$. Complete the proof by filling the blanks.

Proof:

$$BD = \Box + DC$$

BD = a + x

In
$$\triangle ADB$$
, $\angle D = 90^{\circ}$

$$\therefore c^2 = \boxed{ + p^2}$$

 $c^2 = a^2 + \Box + x^2 + p^2$

Also, in $\triangle ADC$, $\angle D = 90^{\circ}$

(i)

•	
	$p^2 = \boxed{}$
	$c^2 = a^2 + 2ax + x^2 + b^2$

(ii)

[From (i) and (ii)]

[Pythagoras theorem]

 $\therefore AB^2 = \boxed{}$

 $c^2 = a^2 + b^2 + 2ax$

[4]

Q.2. B. Solve the following questions. (Any two)

- i. A 50 m long ladder reaches a window 14 m above the ground. Find the distance of the foot of the ladder from the base of the wall.
- ii. Find the perimeter of a square whose diagonal is 10 cm.
- iii. Find the height of an equilateral triangle having side 15 cm.

Q.3. Solve the following questions. (Any two)

[6]

- i. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of diagonals.
- ii. In the adjoining figure, ΔPQR is an equilateral triangle, seg PM \perp side QR. Prove that: $PQ^2 = 4 \text{ QM}^2$

iii. In the given figure, SV is the median and SW \perp TU. Prove that, $SU^2 - ST^2 = 2TU \times VW$

Q.4. Solve the following questions. (Any one)

[4]

- i. The length of one side of a parallelogram is 17 cm. If the length of its diagonals are 12 cm and 26 cm, then find the length of the other side of the parallelogram.
- ii. ABC is a triangle in which AB = AC and D is a point on BC. Prove that $AB^2 AD^2 = BD.CD$.

Q.5. Solve the following questions. (Any one)

[3]

- i. If a and b are natural numbers and a > b, then show that $(a^2 + b^2)$, $(a^2 b^2)$, (2ab) is a Pythagorean triplet. Find two Pythagorean triplets using any convenient value of a and b.
- ii. Pranali and Prasad started walking to the East and to the North respectively, from the same point and at the same speed. After 2 hours distance between them was $15\sqrt{2}$ km. Find their speed per hour.

For more Study Material Visit our Youtube Channel: SID Study Material

Follow us on Instagram : @sidstudymaterial Join Telegram Group : t.me/sidstudymaterial Mail us at : sidstudymaterial@gmail.com