QUESTION BANK

CHAPTER 1 - SMILARITY

1 MARK QUESTIONS

In the figure, BC \perp AB, AD \perp AB, BC = 4, AD = 8,

then find
$$\frac{A(\Delta ABC)}{A(\Delta ADB)}$$

In the adjoining figure, line $l \parallel$ line $m \parallel$ line n. Lines p and q are transversals. m e From the given information, find ST.

3.
$$\triangle ABC \sim \triangle APQ$$
, if $\frac{A (\triangle ABC)}{A (\triangle APQ)} = \frac{1}{4}$, find $\frac{BC}{PQ}$.

- $\triangle ABC \sim \triangle PQR$. State which ratio of sides are equal to $\frac{AB}{PQ}$. 4.
- A (Δ PQR) = 24 cm², the height QS is 8 cm. What is the length of side PR? 5.

6.
$$\angle ABC = \angle DCB = 90^{\circ}$$

 $AB = 6$, $DC = 8$,
then $\frac{A(\Delta ABC)}{A(\Delta DCB)} = ?$

If $\triangle DEF - \triangle MNK$, DE = 5, MN = 6, find the value of $\frac{A(\triangle DEF)}{A(\triangle MNK)}$.

In ΔABC, D is a point on side BC such that BD = 6 cm and DC = 4 cm.
 Find A (ΔABD) : A (ΔADC).

- 9. For ΔABC ~ ΔPQR, state all the corresponding congruent angles.
- 10. In the adjoining figure, seg BE ⊥ seg AB and seg BA ⊥ seg AD.

 If BE = 6 and AD = 9

 find A (ΛABE)

- If ΔABC ~ ΔDEF, A (ΔABC) = 36 cm², A (ΔDEF) = 64 cm², what is the ratio of the length of sides BC and EF?
- 12. The height and the base of $\triangle ABC$ and $\triangle PQR$ are equal. Find $\frac{A (\triangle ABC)}{A (\triangle PQR)}$.
- 13. If $\triangle PQR \sim \triangle XYZ$, $\frac{PR}{XZ} = \frac{2}{3}$ and PQ = 12, then find XY.
- 14. $\triangle PQR \triangle XYZ$. If m $\angle Q = 60^{\circ}$, then find m $\angle Y$.

15.
$$\triangle ABC \sim \triangle APQ$$
, if $\frac{A(\triangle ABC)}{A(\triangle APQ)} = \frac{1}{4}$, find $\frac{BC}{PQ}$.

16. A (ΔPQR) = 24 cm², the height QS is 8 cm. What is the length of side PR?

2 MARK QUESTIONS

 In the figure, PM = 10 cm, A(Δ PQS) = 100 sq.cm, A(Δ QRS) = 110 sq.cm, then find NR

In the figure, seg AC and seg BD interest each other in point P and

$$\frac{AP}{CP} = \frac{BP}{DP}$$

Prove that : ΔABP ~ ΔCDP

In ∆LMN, ray MT bisects ∠LMN
If LM = 6, MN = 10, TN = 8,
then find LT.

 Find QP, using the given information in the figure.

In ΔABC, DE || BD
 If DB = 5.4 cm, AD = 1.8 cm,
 EC = 7.2 cm, then find AE

 In the adjoining figure, seg PS ⊥ seg RQ, seg QT ⊥ seg PR, If RQ = 6, PS = 6 and PR = 12, then find QT.

Are the triangles in the figure similar? If yes, by which test? Justify.

8. As shown in the figure, two poles of height 8 m and 4 m are perpendicular to the ground. If the length of the shadow of smaller pole due to sunlight is 6 m, then how long will be the shadow of the bigger pole at the same time?

- ΔLMN ~ PQR, 9 × A (ΔPQR) = 16 × A (ΔLMN). If QR = 20, then find MN.
- 10. Ratio of areas of two triangles with equal heights is 2 : 3. If base of the smaller triangle is 6 cm, then what is the corresponding base of the bigger triangle?
- From the information given in the adjoining figure, state whether ray PM is the bisector of ∠QPR.

 In ΔPQR, PM = 15, PQ = 25, PR = 20, NR = 8. State whether line NM is parallel to side RQ. Give reason.

- Base of a triangle is 9 and height is 5. Base of another triangle is 10 and height is 6. Find the ratio of areas of these triangles.
- 14. In ∆MNP, NQ is a bisector of ∠ N. If MN = 5, PN = 7, MQ = 2.5, then find QP.

- Areas of two similar triangles are 225 sq.cm. and 81 sq.cm. If a side of the smaller triangle is 12 cm, then find the corresponding side of the bigger triangle.
- 16. In the figure, ∠ABC = 75°, ∠EDC = 75° state which two triangles are similar and by which test? Also write the similarity of these two triangles by a proper one to one correspondence.

 Measures of some angles in the figure are given.

Prove that $\frac{AP}{PB} = \frac{AQ}{QC}$

In ΔPQR, seg RS bisects ∠R.
 If PR = 15, RQ = 20 PS = 12, then find SQ.

In the adjoining figure, AP

 BC,
 AD || BC, then find
 A(Δ ABC) : A(Δ BCD)

3 MARK QUESTIONS

 In the figure, X is any point in the interior of triangle. Point X is joined to vertices of triangle. seg PQ || seg DE, seg QR || seg EF.

 In □ ABCD, seg AD ∥ seg BC. Diagonal AC and diagonal BD intersect each other in point P.

Prove that : seg PR | seg DF.

Then show that $\frac{AP}{PD} = \frac{PC}{BP}$

 In Δ PQR seg PM is a median. Angle bisectors of ∠PMQ and ∠PMR intersect side PQ and side PR in points X and Y respectively.

Prove that XY | QR.

ABCD is a parallelogram. Point E is on side BC. Line DE intersects ray AB in point T. Prove that $DE \times BE = CE \times TE$

5. In trapezium ABCD, side AB | side DC, diagonals AC and BD intersect in point O. If AB = 20, DC =6, OB = 15, then find OD.

- In ∆ABC, ray BD bisects ∠ABC and ray CE bisects ∠ACB. If seg AB \cong seg AC, then prove that ED \parallel BC.
- In the adjoining figure, in ΔABC, point D is on side AC. If AC = 16, DC = 9 and $BP \perp AC$ then find the following ratios.

(i)
$$\frac{A(\Delta ABD)}{A(\Delta ABC)}$$

(ii)
$$\frac{A(\Delta BDC)}{A(\Delta ABC)}$$
 (iii) $\frac{A(\Delta ABD)}{A(\Delta BDC)}$

8. Diagonals of quadrilateral ABCD intersect in point Q. If 2QA = QC, 2QB = QD, then prove that DC = 2AB

In the figure, bisectors of ∠B and ∠C 9. of $\triangle ABC$ intersect each other in point X. Line AX intersects side BC in point Y.

AB = 5, AC = 4, BC = 6, then find
$$\frac{AX}{XY}$$

 In the figure, A-D-C and B-E-C, seg DE || side AB. If AD = 5, DC = 3, BC = 6.4, then find BE.

 In the figure, in ΔABC, point D on side BC is such that, ∠BAC = ∠ADC.
 Prove that: CA² = CB × CD

12. In \triangle ABC, ray BD bisects \angle ABC and ray CE bisects \angle ACB. If seg AB \cong seg AC, then prove that ED \parallel BC.

13. In trapezium PQRS, side PQ ∥ side SR, AR = 5AP, AS = 5AQ, then Prove that : SR = 5PQ

In ∆ABC, ray BD bisects ∠ABC and ray CE bisects ∠ACB.
 If seg AB ≅ seg AC, then prove that ED || BC.

 In ABC, B-D-C and BD = 7, BC = 20, then find following ratios.

- (i) $\frac{A(\Delta ABD)}{A(\Delta ADC)}$
- (ii) $\frac{A(\Delta ABD)}{A(\Delta ABC)}$
- (iii) $\frac{A(\Delta ADC)}{A(\Delta ABC)}$

4 MARK QUESTIONS

- Prove: If a line parallel to a side of a triangle intersects the remaining sides in two distinct points, then the line divides the sides in proportion.
- In the figure, seg PA, seg QB, seg RC and seg SD are perpendicular to line AD.
 AB = 60, BC = 70, CD = 80, PS = 280, then find PO, QR and RS.

Prove: The bisector of an angle of a triangle divides the side opposite to the angle in the ratio of the remaining sides.

For more Study Material Visit our Youtube Channel: SID Study Material

Follow us on Instagram: @sidstudymaterial Join Telegram Group: t.me/sidstudymaterial Mail us at: sidstudymaterial@gmail.com

