


COVID-19

“Evolving Concepts in Pathophysiology”

“All professions are conspiracies against the laity”
George Bernard Shaw gave these words to the kindly old
curmudgeon, Sir Patrick Cullen, in his 1906 play
The Doctor's Dilemma.
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infection: Origin, transmission, and characteristics of human
coronaviruses. Journal of Advanced Research. 2020;24:91-98.
doi:10.1016/j.jare.2020.03.005

Alphacoronavirus
la ©
=, 1
& 3 Nucleocapsid protein
s > = 1b
< S &
EE & i
= & o = Envelope glycoprotein (E)
bo“\b S
F RNA
e
= coN A : :
Bat —s Spike protein (S}
Bat CoV HKUS
Hip, id. =
. posideros Bat Cov Hku10 Membrane glycoprotein (M)
at CoVv cpp,
<y, HE
% L
O, M
@0y, Lipid bilayer
0\"
)
%,6 %, G Gy
® 2
<, <
%(‘
O,
2 LX) ‘?'e 5 A\
= S 2 Attachmep, SV’
Gammacoronavirus .;_ s’ %é ~e SARS-CoV-2 5‘3':’
P 2 > oz =
® » N/ ./‘{f)\. N\ viral release ¥*i % ¢
/" I ace2 acez2 | Ner |- \K
p receptor L= e
Bat SARS CoV HKU 3-1 y o
Bat SARS CoV Rf1 / e
Bat SARS CoV Rm 1 / Exocytosis
WSFMP_Wuhan-Hu-1 Fusion t
2019-nCoV/USA-CA1/2020
2019-nCoV/USA-CA2/2020 ° ?
2019-nCoV/USA-IL1/2020 = Wiles A .
2019-nCoV_WHU02 | Uncoating Vesicle | 58g J2o o8 ¥
2019-nCoV_WHUO1 ; = Fhave Than
2019-nCoV/USA-WA1/2020 Genomic RNA (positive) ¢ ;i
2019-nCoV_HKU-SZ-005b_2020 :
2019-nCoV_HKU-52-002a_2020 l Translation of ORF1a / ORF1b 1
2019-nCoV/USA-AZ1/2020 %
WSFMP-WIVO7 5 3 i A
WSFMP-WIVO2 Golgi ((.-\\
WSFMP-WIVO4 i Replication / Translation
WSEMP-WIVOS N T
WSFMIP-WIVDS 3| I /[ || 5" (Negative) ERGIC
Bat SARS like CoV Rp3 ! I H Replicase
SARS CoV v
Bat SARS-like CoV W1Vl ;
SARS-like CoV W1V16 s 1 s? /
LN [ 13
S Assembly and
s I 1E g
7 Y *’.\‘ ‘1 xrl" budding
MRNAs - M Translation $.“ e .
ST g —m™™ g ¢ .-:..#
N | [ _17a/7b i Ve
\ s | |8 ® .
\ s [ [ INw /9b Y o
\ . vy Rough ER
\ s I | [0 3° (positive)  Yronr@ngV¥

? Spikes protein Envelope protein

¥ Membrane protein

¥ Nucleocapsid

'\‘i?"/‘.
SR e
./"‘I‘\;
.\“‘"‘/‘.
= S°
./"‘l‘\;

-®

Y

i



Mmalwm ‘\Iut'mous

Bats

Humans
C:vets < ARS — cwon
wrign [ user s \WHY are

Mutations Mutations C O rO n a Vi r U S
B. Bats l . l

Camels . .
s INfECIONS
variant MERS-CoV

not lethal
b t—$ I_‘ for Bats ?

. Unknown I
umans
SARS-CoV=2
variant




> ’-;"‘ g Ll (4

‘S\ ‘. " 6 z i

e B2 == e P The Virus and affinity for
b | e e |~ |meme | e LN cellular receptors: ACE 2;

A D g @% ® ' | o TMPRSS 2; DPP4; Neuropilin
@ (s ’ o0 { R . .
. . - . d (23 and Tissue Tropism as an
@ X 3 ofe | = g explanation for organ

dysfunction

Receptors for SARS-CoV-2 Present in Wide Variety of Human Cells. The Scientist Magazine®. Accessed July 15, 2020.
https://www.the-scientist.com/news-opinion/receptors-for-sars-cov-2-present-in-wide-variety-of-human-cells-67496

Evolution of management paradigms

The antiviral paradigm

The Cytokine paradigm

The Inflammasome paradigm and understanding attenuation of end organ damage
Integrating all paradigms into a practical clinical approach



Laboratory Findings " 0

Normal Range All patients (n = 452) Non-Severe (n = 166) Severe (n = 286) P value

blood routine

Leucocytes, x 10° per L 3.5-9.5 5.3 (3.9-7.5) 4.9 (3.7-6.1) 5.6 (4.3-8.4) <0.001
Neutrophils, x 10° per L 1.8-6.3 3.9 (2.6-5.8) 3.2(2.1-4.4) 4.3 (2.9-7.0) <0.001
Neutrophil percentage, % 40.0-75.0 74.3 (64.3-83.9) 67.5 (57.8-75.8) 77.6 (68.9-86.5) <0.001
Lymphocytes, x 10° per L; 1.1-3.2 0.9 (0.6-1.2) 1.0 (0.7-1.3) 0.8 (0.6-1.1) <0.001
Lymphocyte percentage, % 20.0-50.0 17.5(10.7-25.1) 21.4 (15.3-32.5) 14.1(8.8-21.4) <0.001
Neutrophil-to-lymphocyte ratio 4.2 (2.5-7.7) 3.2 (1.8-4.9) 5.5(3.3-10.0) <0.001
Monocyte, x 10° per L 0.1-0.6 0.4 (0.3-0.5) 0.4 (0.3-0.5) 0.4 (0.3-0.5) 0.395
Monocyte percentage, % 3.0-10.0 7.1(4.9-9.6) 8.4 (6.5-10.8) 6.6 (4.3-8.8) <0.001
Eosinophils, x 10° per L 0.02-0.52 0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.0 (0.0-0.0) <0.001
Eosinophil percentage, % 0.4-8.0 0.0 (0.0-0.4) 0.2 (0.0-0.7) 0.0 (0.0-0.2) <0.001
Basophils, x 10° per L 0.00-0.10 0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.0 (0.0-0.0) 0.747
Basophil percentage, % 0.0-1.0 0.1(0.1-0.2) 0.2 (0.0-0.3) 0.1 (0.0-0.2) 0.015

Infection-related biomarkers

Procalcitonin, ng/mL 0.0-0.05 0.1 (0.0-0.2) 0.05 (0.03-0.09) 0.1 (0.0-0.2) <0.001
T ——— 0.0-15.0 31.5 (17.0-58.0) 28.0 (14.0-50.0) 34.0 (19.0-60.0) 0'123mmr/]

Dysregulation of immune response in patients with COVID-19 in Wuhan, China
Prof. Dai-Shi Tian MD, PhD Oxford University Press for the Infectious Diseases Society of America.



ymphocyte Subsets

T cells+B cells+NK cells /ul
T cells+B cells+NK cells %
B cells (CD3-CD19+) /ul
B cells (CD3-CD19+) %
T cells (CD3+CD19-) /ul
T cells (CD3+CD19-) %
NK cells (CD3-/CD16+CD56+) /Jul
NK cells (CD3-/CD16+CD56+) %
Lymphocyte function
IFN-y+ CD4+ T cells /Th %
IFN-y+ CD8+ T cells /Ts %
IFN-y+ NK cells /NK %
T cells Subsets
Th cells (CD3+CD4+) /ul
Th cells (CD3+CD4+) %
Ts cells (CD3+CD8+) /ul

\CIMMEULENEE

1100.0-3200.0
95.0-105.0
90.0-560.0
5.0-18.0
955.0-2860.0
50.0-84.0
150.0-1100.0
7.0-40.0

14.54-36.96
34.93-87.95
61.2-92.65

550.0-1440.0
27.0-51.0
320.0-1250.0

V D

852.9 (412.0)
98.9 (1.0)
179.7 (143.1)
20.5 (10.9)
541.5 (292.7)
61.3 (10.1)
131.7 (83.1)
17.0 (10.1)

21.2 (12.2)
48.6 (13.7)
68.0 (14.7)

338.6 (196.3)
38.3 (8.1)
173.4 (115.2)

1020.1 (396.5)
99.2 (0.6)
196.1 (144.9)
18.5 (8.1)
663.8 (291.3)
63.4 (8.5)
160.2 (90.8)
17.2 (10.1)

22.6 (10.2)
46.9 (11.6)
66.7 (19.3)

420.5 (207.8)
39.8 (7.5)
201.9 (107.1)

Dysregulation of immune response in patients with COVID-19 in Wuhan, China
Prof. Dai-Shi Tian MD, PhD Oxford University Press for the Infectious Diseases Society of America.

743.6 (384.4)
98.6 (1.2)
169.0 (140.9)
21.8 (12.2)
461.6 (264.7)
60.0 (10.8)
113.0 (71.8)
16.9 (10.1)

20.2 (13.3)
49.7 (14.8)
68.8 (10.5)

285.1 (168.0)
37.2 (8.4)
154.7 (116.5)

All patients (n =44) Non-Severe (n =17) Severe (n=27) P value

0.032
0.103
0.559
0.353
0.027
0.283
0.072
0.926

0.557
0.541
0.677

0.027
0.314
0.197




Serum ferritin, ng/mL

C-reactive protein, mg/L
Inflammatory cytokines

Tumor necrosis factor-a,

Interleukin-1B, pg/mL

Interleukin-2R, U/mL
Interleukin-6, pg/mL
Interleukin-8, pg/mL

Interleukin-10, pg/mL

Immunoglobulins
Immunoglobulin A
Immunoglobulin G

Immunoglobulin M

Complement proteins

0|0
| W

Dysregulation of immune response in patients with COVID-19 in Wuhan, China
Prof. Dai-Shi Tian MD, PhD Oxford University Press for the Infectious Diseases Society of America.

pg/mL

15.0-150.0
0.0-1.0

0.0-8.1
0.0-5.0
223.0-710.0
0.0-7.0
0.0-62.0
0.0-9.1

0.82-4.53
7.51-15.60
0.46-3.04

0.65-1.39
0.16-0.38

662.4 (380.9-1311.9)
44.1 (15.5-93.5)

8.6 (6.9-10.9)
5.0 (5.0-5.0)
714.5 (514.5-1040.3)
21.0 (6.1-47.2)
16.7 (10.2-27.0)
5.4 (5.0-9.7)

2.21 (1.65-2.79)
11.75 (9.70-13.60)
0.95 (0.70-1.31)

0.88 (0.77-1.00)
0.26 (0.20-0.31)

523.7 (299.1-840.4)
33.2 (8.2-59.7)

8.4 (6.9-10.4)
5.0 (5.0-5.0)
663.5 (473.3-862.8)
13.3 (3.9-41.1)
13.7 (8.9-21.0)
5.0 (5.0-7.0)

2.14 (1.66-2.71)
11.85 (10.13-13.40)
1.02 (0.77-1.37)

0.88 (0.77-1.00)
0.26 (0.20-0.31)

800.4 (452.9-1451.6)
57.9 (20.9-103.2)

8.7 (7.1-11.6)
5.0 (5.0-5.0)
757.0 (528.5-1136.3)
25.2 (9.5-54.5)
18.4 (11.3-28.4)
6.6 (5.0-11.3)

2.26 (1.57-2.89)
11.7 (9.53-13.8)
0.90 (0.69-1.28)

0.89 (0.77-1.00)
0.26 (0.20-0.31)

<0.001
<0.001

0.037
0.962
0.001
<0.001
<0.001
<0.001

0.285
0.551
0.033

0.942
0.851



COVID-19 lliness Course

SARS-CoV-2 Respiratory Viral RNA Load

s Typical i L ———SeVIre
5.1 days (median) 5-10 days Days - weeks
Incubation Period Acute Mild Phase * ARDS/Pro-inflammatory Phase Recovery
) u;uwi 4
% =1 Symptom onset Hallmarks: dyspnea, tachypnea, hypoxemia
; 0 IUW!
005 | * Acute Mild Phase: nonspecific symptoms. Most
; commonly fevers, cough, myalgias, fatigue. Nausea,
ey Wt e Aympinet O diarrhea reported <50% of the time
Pan Lancet |D 2020 hMtps//dol org/10,1016/51473-3099(20}30113.4 Wang JAMA 2020 doi:10.1001/Jama.2020,1585
Zou NEIM 2020 DO 10.1056/NEIMc2001737 Siddigi JHLT 2020 doi:10.1016/; healun.2020.03.012
Zhou Lancet 2020 https://dol.org/10.1016/50140-6736(20)30566-3 Wolfel Nature dol:10,1038/541586-020-2196-%
LI NEIM 2020 DO 10,1058/NEIMoa 20013156
Meyerowitz EA, Vannier AGL, Friesen MGN, et al. Rethinking the role of hydroxychloroquine in the treatment

of COVID-19. The FASEB Journal. 2020;34(5):6027-6037. doi:10.1096/fj.202000919



Timing of Treatment in Relation to Onset of

Symptoms
.

Acute respiratory
distress syndrome

Recovery

Adjuvants

Optimal timing of therapeutic use unknown; proposed schematic based on medication type, potential
for direct antiviral effect, mitigation of cytokine storm, or nonspecific adjuvant effect

Slide credit: clinicaloptions.com
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MAN OF THE YEAR

Man of the Year 1996
Dr. David Ho

For helping lift a death sentence — for a few years at least, and perhaps longer —
on tens of thousands of AIDS sufferers, and for pioneering the treatment that
just might lead to a cure, David Da-i Ho, M.D., is TIME's Man of the Year

DR. Davip Ho

AIDS
RESEARCHER
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Viral Quasispecies
“The standard definition of a biological species does not apply to viruses. A more expansive and

dynamic view of viral populations holds clues to understanding and defeating them”
Scientific American : July 1993

Manfred Eigen received his PhD at the
University of Gottingen and has been
former director of the Max Planck
Institute for Biophysical Chemistry in
Gottingen. He is an honorary doctor of the
TU Braunschweig. From 1982 to 1993,
Eigen was president of the German
National Merit Foundation.

In 1967, Eigen was awarded, along with
Ronald George Wreyford Norrish and
George Porter, the Nobel Prize in
Chemistry. They were distinguished for
their studies of extremely fast chemical
reactions induced in response to very
short pulses of energy.

In addition, Eigen's name is linked with
the theory of the chemical hypercycle, the
cyclic linkage of reaction cycles as an
explanation for the self-organization of
prebiotic systems, which he described
with Peter Schuster in 1977. Eigen is a
member of the Board of Sponsors of The
Bulletin of the Atomic Scientists. He
founded two biotechnology companies,
Evotec and Direvo.
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Population size may affect the evolutionary outcome. The large rectangle represents a viral
guasispecies. Three types of particles harboring mutations that can confer resistance to a selective
agent are distinguished (red triangles, white squares, and yellow stars) from other components of
the mutant spectrum (blue circles). If a small population is analyzed (white inner circle on the left), no
resistant variants will be found. Further viral replication of that subpopulation will be needed to
generate the resistant mutants. If an intermediate-size population is analyzed (intermediate gray
inner circle on the right), two of the resistant variants will be found. If a large population is analyzed
(large circle), all relevant variants will be represented
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Esteban Domingo et al. Microbiol. Mol. Biol. Rev.
2012;76:159-216
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ey Therapeutic Classes Under Investigation
for Treatment of COVID-19

“Appropriate management strategies for patients with
COVID-19 are a rapidly evolving therapeutic challenge, and

the optimal agents (if any) to treat infection or prevent
progression to critical illness remain ill-defined.”

Slide credit: clinicaloptions.com
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Key Data From Randomized Clinical Trials for COVID-19

Population

Comparator

Primary Outcome

No difference in time to clinical

Lopinavir/ritonavirll 199 Adults, severe SOC alone .
improvement
Lopinavir/ritonavir 36 Adults, mild-to- Umifenovir or No difference in rate of positive-to-negative
P moderate no antiviral conversion of SARS-CoV-2 nucleic acid
No difference in time to clinical
. improvement; study did not reach
Remdesivir3! 237 Adults, severe Placebo P . Y .
predetermined enrollment due to reduction
in infections
. Remdesivir, 10 No difference in clinical status at Day 14
Remdesivir, 5 days/4 397 > 12 yrs, severe . . o
days after adjustment for baseline severity
. . . . No difference in clinical recovery rate of Da
Favipiravir*D! 240 Adults, pneumonia Umifenovir 5 Y y
Adults, mild-to- No difference in negative conversion of
Hydroxychloroquine*[®] 150 ’ SOC alone
y y g moderate SARS-CoV-2 by Day 28
*Published as a preprint; not yet peer-reviewed.
1. Cao. NEJM. 2020;382:1787. 2. Li. Med. 2020;[Epub]. 3. Wang. Lancet. 2020;395:1569. 4. Goldman. NEJM. 2020;[Epub]. E

5. Chen. https://doi.org/10.1101/2020.03.17.20037432 6. Tang. https://doi.org/10.1101/2020.04.10.20060558

Slide credit: clinicaloptions.com
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Key Data From Randomized Clinical Trials for COVID-19
(Cont.)

Population Comparator Primary Outcome

= Median recovery time: 11 vs 15

Evidence of lower days, P < .001

. . [1] .
Remdesivir 1063 reisnpvlgz?\t/:xetrr;ct Placebo - Mortality by Day 14: 7.1% vs
11.9% (NS)
= |mprovement in composite
Tocilizumabl23 199 Moderate or | Standard care endpon?t of death or nged for
severe pneumonia alone ventilation at Day 14 with
tocilizumab vs standard care
= CRP decline: 77% and 79% vs 21%
Sarilumab (200 457 Severe or critical Placebo IDMC recommended continuing

phase Ill only in critical subgroup
with 400 mg sarilumab vs placebo

or 400 mg)!4>]

1. Beigel. NEJM. 2020;[Epub]. 2. https://www.aphp.fr/contenu/tocilizumab-improves-significantly-clinical-outcomes-patients-
moderate-or-severe-covid-19 3. NCT04331808. 4. NCT04315298. 5. https://newsroom.regeneron.com/news-releases/news- E
release-details/regeneron-and-sanofi-provide-update-us-phase-23-adaptive Slide credit: clinicaloptions.com
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Randomised Evaluation of COVid-19 thERapY
(RECOVERY) Trial Among Hospitalised Patients

= Patients randomized to SOC plus: no additional treatment, lopinavir/ritonavir,
dexamethasone, hydroxychloroquine (HCQ), or azithromycin

— Factorial design with simultaneous allocation to no additional tx vs convalescent plasma

— If progressive disease (hyper-inflammatory state), subsequent randomization to no
additional treatment vs tocilizumab

= >11,500 patients enrolled from > 175 NHS hospitals in UK

= 6/5/2020: statement on closure of recruitment to HCQ arm for lack of clinical benefit

— 28-day mortality: 25.7% with HCQ + SOC (n = 1542) vs 23.5% with SOC alone (n =3132)
(RR:1.11; 95% Cl: 0.98-1.26; P = .10)

= 6/8/2020: recruitment to dexamethasone arm halted because sufficient patient
numbers enrolled to establish potential benefit

https://www.recoverytrial.net. https://www.recoverytrial.net/files/hcqg-recovery-statement-050620-final-002.pdf. E
https://www.recoverytrial.net/files/recovery_dexamethasone_statement_160620_final.pdf. Slide credit: clinicaloptions.com
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RECOVERY Trial: Partial Dexamethasone Results
Reported by Press Release

= Data suggest 1 death prevented by treatment of ~ 8 ventilated patients or ~ 25
patients requiring oxygen alone

Dexamethasone 6 mg QD SOC Only RR for Death With
(n = 4321) Dex + SOC vs SOC
- Alone (95% Cl)

Outcome, % POorlV+SOCfor10D
(n=2104)

28-day mortality

= Patients requiring

. NR 41 0.65 (0.48-0.88) .0003
ventilation
= Patients requiring oxygen NR 75 0.80 (0.67-0.96) 0021
only
" Patients requiring no NR 13 1.22 (0.86-1.75) 14

respiratory intervention

https://www.recoverytrial.net. https://www.recoverytrial.net/files/recovery_dexamethasone_statement_160620_final.pdf. Slide credit: clinicaloptions.com
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Viral non-structural protein attack hemoglobin. A. orflab attacks the deoxyhemoglobin. B. ORF3a attacks the
deoxyhemoglobin. C. ORF10 attacks the deoxyhemoglobin. D. orflab attacks the oxidized hemoglobin. E. ORF10
attacks the oxidized hemoglobin. F. ORF3a attacks the oxidized hemoglobin.
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SARS-CoV-2: A Storm is Raging

Savannah F. Pedersen, Ya-Chi Ho
J Clin Invest. 2020. https://doi.org/10.1172/JCI137647.
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Figure 1. Cytokine storm and T cell
lymphopenia is associated with COVID-
19 disease severity. SARS-CoV-2 infection
causes COVID-19. Compared to uninfected
individuals (left panel), moderate COVID-19
cases exhibit an increase in IL-6 and a
decrease in total T lymphocytes count,
particularly CD4* T cells and CD8* T cells
(middle panel). Severe COVID-19 cases
have further increased production of IL-6, IL-
2R, IL-10 and TNFa, while total T
lymphocytes, particularly CD4* T cells and
CD8* T cells, and IFNy-expressing CD4* T
cells markedly decrease (right panel). The
level of cytokine storm and T cell
lymphopenia is associated with pulmonary
damage, respiratory distress and
unfavorable outcome.
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Interleukin-18 diagnostically distinguishes and pathogenically
promotes human and murine macrophage activation syndrome

Myeloid Epithelial
®e,° I-18
S . ..
e 0
NLRC4-MAS, -
AID slIA, AOSD fHLH
ne
)® ) © r
oy w8k fody
de ¢ 0,0 )
) o(._O ¢ ® tok
¢
))) gty
)) ) ‘ #. .-/
x
= # Amplified
A 5 Lymphocyte Activation
2
NI
L ]
mru:.l::‘mm L18@ ®
@ 1@ -
L) L1 @ ’ L A Macrophage
2 Activation
18 inflamm.
R«cuwu Signals. “ .
. ® O Syndrome
& @ [ et
Receptor Il

Eric S. Weiss,Charlotte Girard-Guyonvarc’h,Dirk
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and murine macrophage activation syndrome,
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FIGURE 1 | Pathways regulating macrophage function in
MAS. 1. IFNy binds the IFNy receptor (IFNGR) and
subsequently induces the phosphorylation of STAT1 by
JAK1/2 in the cytoplasm. STAT1 dimer then binds to y-
interferon activation site (GAS) and enhances the
transcription of interferon-stimulated genes (ISG), such as
interferon regulatory factor 1 (IRF1). 2. STAT1 activation
by IFNy also induces macropinocytosis leading to the
engulfment and degradation of red blood cells (RBC) in a
process known as hemophagocytosis. 3.
Hemophagocytosis is also mediated by the uptake of
hemoglobin (Hb)-heptaglobin complex by CD163. The Hb-
heptaglobin complex is degraded in the lysosome followed
by catalysis of heme by heme oxygenase-1 (HO-1) to

carbon dioxide (CO), bilverdin, and iron (Fe2+). Bilverdin is
then converted to bilirubin by bilverdin reductase, and iron
is bound to ferritin. 4. This process also leads to the
production of IL-10 that through binding to IL-10 receptor
induces STAT3 phosphorylation and the production of anti-
inflammatory cytokines that counteract IFNy signaling. 5.
In a mouse model of MAS, serial injections of CpG induce
the activation of toll-like receptor 9 (TLR9) in the
macrophage endosome leading to the production of pro-
inflammatory cytokines in a MyD88 and NFkB dependent
manner.

The Immunology of Macrophage Activation Syndrome

Courtney B. Crayne 1, Sabrin Albeituni2, Kim E. Nichols? and Randy Q. Cron* : pediatric Rheumatology, University of Alabama Birmingham, Birmingham, AL, United States, 2

Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States

(2019) The Immunology of Macrophage Activation Syndrome. Front. Immunol. 10:119. doi:_10.3389/fimmu.2019.00119




Haemophagocytic lymphohistiocytosis (HLH)—2004 diagnostic criteria

At least five of the following criteria should be met:

*Fever

*Splenomegaly

*Cytopenias (affecting 22 of 3 lineages in the peripheral blood)
*Haemoglobin <90 g/L (haemoglobin <100 g/L in infants <4 weeks)
*Platelets <100x10°/L

*Neutrophils <1.0x10°%/L

*Hypertriglyceridaemia and/or hypofibrinogenaemia

*Fasting triglycerides 23.0 mmol/L (ie, 2265 mg/dL)

*Fibrinogen <1.5 g/L

*Hemophagocytosis in bone marrow or spleen or lymph nodes. No evidence of malignancy.
*Low or no NK cell activity (according to local laboratory reference)
*Ferritin 2500 mg/L

*sCD25 (ie, soluble IL-2 receptor) 22400 U/mL

Alunno A, Carubbi F, Rodriguez-Carrio J

Storm, typhoon, cyclone or hurricane in patients with COVID-19? Beware of the same storm that has a different origin RMD
Open 2020;6:e001295. doi: 10.1136/rmdopen-2020-001295



Summary of treatment for macrophage activation syndrome

Treatment Medication

- First line Corticosteroids: methylprednisolone,
prednisolone, dexamethasone
Cyclosporin A

- Alternative Intravenous immunoglobulin
Etoposide
Cyclophosphamide
Plasma exchange
Anti-thymocyte globulin
Biologic agents: IL-1 inhibitor

* Lerkvaleekul B, Vilaiyuk S. Macrophage activation syndrome: early diagnosis is key. Open
Access Rheumatol. 2018;10:117-128. Published 2018 Aug 31. doi:10.2147/0OARRR.5151013



Mock infection MERS-CoV Infection

Jiang et al. Emerging
Microbes & Infections

(2018) 7:77 ,
Fig. 1 MERS-CoV infection induces excessive

C3

C5b-9

complement activation in hDPP4-transgenic mice.
a—f Representative images of lung tissue sections
from MERS-CoV-infected or Mock-infected hDPP4-
transgenic mice by immunohistochemical staining
for C3, C5b-9, and C5aR (n =5 per group). g
Transcriptional expression of C5aR in lung tissues at
different time points after MERS-CoV infection (n =
3-5 per group). h Concentration of C5a in sera at
different time points after virus infection was
measured by a quantitative enzyme-linked

immunosorbent assay (ELISA). Data are expressedas 8,41 & 14
the means = SEM (n = 5 per group). 'P < 0.05, "P < ¥ asptictan | * pm
0.01, and '""P < 0.001 (one-way analysis of variance

(ANOVA) with Dunnett’s post-test)
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Jiang et al. Emerging

Microbes & Infections
(2018) 7:77

Fig. 2 C5a—C5aR blockade reduced local and
systemic inflammatory responses in hDPP4-
transgenic mice. a—d Infiltration of
macrophage (a—b) and the expression of IFN-y
receptor (c—d) were assessed by
immunohistochemical staining in the lungs 3
days after challenge (CD68*macrophages were
indicated by arrows). e Sera from the two
groups of mice were collected on day 3 and
assayed for the levels of IL-1B, IL-6, TNF-a, IFN-
vy, IL-10, IL-12 (ea), KC, MCP-1, and IP-10 (eb).
The results are the mean + SEM (n =5). *P <
0.05 (Student’s t test with Welch’s correction)
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Jiang et al. Emerging
Microbes & Infections
(2018) 7:77

Fig. 3 C5a—C5aR blockade limits viral replication
in lung tissue. a—b Representative images of
immunohistochemical staining of MERS-CoV
antigen in lungs on day 7 after challenge in the
sham treatment and anti-C5aR Ab treatment
groups. ¢ Viral RNA copies in lung tissues in the
sham treatment and anti-C5aR Ab treatment
groups. d Virus titer in lungs on day 7 after
challenge in the sham treatment and anti-C5aR
Ab treatment groups. Data are expressed as the
means + SEM (n =5 per group). *P < 0.05, **P <
0.01 (Student’s t test with Welch’s correction)
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Figure 3 Immunohistochemistry analyzed lymphocytes and the complement C5b-
9 in kidney tissues. The expression of (A) CD68, CD8 and CD56; (B) C5b-9 in
kidney tissues from COVID-19 patients undergoing postmortem examination or
normal healthy was detected by immunohistochemistry. Arrow indicated positive
cells. Scale bar= 100 uM.

Human Kidney is a Target for Novel Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
Infection

Bo Diao¥, Chenhui Wang®, Rongshuai Wang®#,
Zeqing Feng?, Yingjun Tan!, Huiming Wang?,
Changsong Wang®, Liang Liu®, Ying Liu?, Yueping
Liut, Gang Wang?, Zilin Yuan!, Liang Ren?®*, Yuzhang

Wu?, Yongwen Chen?*
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*Figure 1. Pathogenesis and therapy targets.

eup to 4 weeks, and the final assessment at day 29.
Screening and the day 1 visits can occur on the same day
if necessary if the subject has met all inclusion and none of
the exclusion criteria.

*Up to 4 weekly infusions of eculizumab at 900 mg were
administered. Eculizumab is formulated at pH 7 and each 30
mL vial contains 300 mg of eculizumab, polysorbate 80 (6.6
mg) (vegetable ori-gin), sodium chloride (263.1 mg), sodium
phosphate dibasic (53.4 mg), sodium phosphate monobasic
(13.8 mg), and water for injection, USP. Eculizumab has to be
administered via 1V infusion via gravity feed, a syringe-type
pump, or an infusion pump, and has been diluted to a final
concentration of 5 mg/mL before administration. The diluted
eculizumab has been IV administered over approximately 35
min-utes. The patients have been monitored for at least 1 hour
following the infusion for signs or symptoms of an infusion
reaction. The duration of each pa-tient’s treatment with
eculizumab was a minimum of 8 days and a maximum of 22
days.

«Patients could be treated with: 1. Confirmed severe
COVID-19 requiring hospitalization; 2. Symptomatic,
bilateral pneumonia confirmed by CT or X-ray at screening
or within the 7 days prior to screening; 3. Severe pneumonia
requir-ing oxygen supplementation (WHO 2020); 4. >18
year of age at the time of providing informed con-

)

wsentiassent; 5. willing and able to give written in-formed consent. Exclusion Criteria: 1. confirmed mild to

moderate COVID-19, even if the patient i hospitalized; 2. the patiet is ot expected to survive > 24 hours

“Supportive therapy during treatment with ecu-lizumab consisted in

« anticoagulant therapy with Enoxaparin 4000 1U/day Vi subcutaneous injection;

« antiviral therapy with Lopinavir 800 mg/day + Ritonavir 200 mg/day:

« hydroxychloroquine 400 mg/day:

« ceftriaxone 2 glday IV

« vitamin C6 glday for 4 days;

« CPAP (non-invasive ventiltion).

“Al chest CT examinations were performed with a Philips Ingenuity 64 scanner located in the “red” COVID area

n . ifpossile.

heb 20

tleast 512 x 512; 1mm algorithm with high spatial frequency (for g

or bone); CT analysis: two raciologsts have analyzed the CT images independently with king window (width,




Fig. 2 Schematic representatic
of protective versus pathogenit
inflammatory responses to
pathogenic hCoV infections
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Reported Therapeutic mechanism Example cytokine target

IL-1 IL-1 receptor antagonist Anakinra, canakinumab

IL-6 Anti-IL-6R monoclonal Ab Tocilizumab

IL-18 IL-18 binding protein Not commercially available

CD28 CTLA4-Ig Abatacept

JAK1/2 JAK inhibitor Tofacitinib

Theoretical Proposed mechanism Example cytokine target
IL-10 Recombinant IL-10 protein None available

IL-33 Anti-IL-33R monoclonal Ab None available

IFNy Anti-IFNy monoclonal Ab None available

TNF, tumor necrosis factor; Ab, antibody; IL, interleukin; R, receptor; CTLA,
cytotoxic T-lymphocyte-associated protein 4; Ig, immunoglobulin; JAK, Janus
kinase; IFNy, interferon-gamma.

The Immunology of Macrophage Activation Syndrome

Courtney B. Crayne 1, Sabrin Albeituni2, Kim E. Nichols? and Randy Q. Cron* : pediatric Rheumatology, University ofAlabama Birmingham, Birmingham, AL, United States, 2
Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States

(2019) The Immunology of Macrophage Activation Syndrome. Front. Immunol. 10:119. doi:_10.3389/fimmu.2019.00119




Therapeutic Implications of understanding the role of Cytokines
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Therapeutic Implications of understanding the role of Cytokines

Indiscriminate blockade of cytokines may be counterproductive
An early interferon response and inflammatory cytokines are part of the host attempt to resist infection
Delayed interferon response may lead to greater replication of the invading pathogen
Lack of early clearance of pathogen is in part responsible for the cytokine storm
Too early a blockade of cytokines may predispose to more infections
Timely intervention with blockade of IL1; IL 6; Anti C5 maybe beneficial
Combination of multiple locus blockade may be superior to a single agent
Proper selection of individuals who may benefit is key
Predictors of MAS/Cytokine storm in viral infections like COVID 19:
e Absolute lymphocyte count less than 800
* Ferritin greater than 800
The Yeldandi rule + any one of the following: Fever; Respiratory rate > 20; Hypotension; Evidence of
organ dysfunction should be selected for early intervention with biologics to block cytokines in addition
to standard treatment
In future data from GWA may allow a genetic marker to be used for greater precision (Blood group A
highest risk levels of von Willebrand Factor ?)
A controlled clinical trial is imperative

Yeldandi Rule




Figure 1. Outline of major protein prenylation pathways and
potential targets for antiviral therapy. (a) ...
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—— Fatigue

—=— General unwellness
—— Headaches

—— Loss of smell or taste
—— Shortness of breath
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From: Is a “Cytokine Storm” Relevant to COVID-19?

JAMA Intern Med. Published online June 30, 2020. doi:10.1001/jamainternmed.2020.3313

Table Title:

Table. Plasma Levels of Interleukin-6 Reported in COVID-19 Compared With Levels Previously Reported in ARDS®

Total population

Severe disease

Measurement
CcovID-19 No. IL-6 levels, pg/mL No. IL-6 levels, pg/mL platform
Zhou et al* 191 7 (5-11) 545 11(8-14) CL
Wu et al' 123 7 (6-9) 84¢ 7(6-11) CL
Mo et al® 155 45 (17-96) 854 64 (31-165) CL
Qinetal? 452 21 (6-47) 286° 25 (10-55) cL
Cummings et al® NR NR 237f 26 (11-69) CL

Total population Hypoinflammatory Hyperinflammatory

Measurement
ARDS No. IL-6 levels, pg/mL  No. IL-6 levels, pg/mL No. IL-6 levels, pg/mL platform
ALVEOLI” 521 238 (94-741)f 386 154 (67-344) 135 1525 (584-3802) ELISA
FACTT® 884 130 (46-411)f 638 86 (34-216) 246 578 (181-2621) ELISA
SAILS® 720 443 (173-1513)f 451 282 (115-600) 269 1618 (517-3205) ELISA

Abbreviations: ALVEOLI, Assessment of Low Tidal Volume and Elevated
End-Expiratory Pressure to Obviate Lung Injury; ARDS, acute respiratory
distress syndrome; CL, clinical laboratory; CLIA, chemiluminescent
immunoassay; ELISA, enzyme-linked immunosorbent assay; FACTT, Fluids And
Catheters Treatment Trial; ICU, intensive care unit; IL-6, interleukin-6; NR, not
reported; SAILS, Statins for Acutely Injured Lungs From Sepsis.

2 Presented values are the medians with interquartile ranges. The top segment
of the Table reports data from selected COVID-19 cohorts (n > 100) and their
corresponding severe subgroups. The bottom segment reports data from 3
National Heart, Lung, and Blood Institute ARDS network randomized clinical
trials. Values are reported for the total cohorts and in subgroups stratified by

ARDS phenotypes (hypoinflammatory and hyperinflammatory). The mean
(SD) IL-6 levels for the ARDS trials were as follows: ALVEOLI, 2051 (8208)
pg/mL; FACTT, 1048 (3348) pg/mL; and SAILS, 2363 (10 940) pg/mL.

b Nonsurvivors.

€ ARDS.

d Refractory hypoxemia.

€ Acute hypoxemic respiratory failure.

f Requiring ICU admission.

Plasma Levels of Interleukin-6 Reported in COVID-19 Compared With Levels Previously Reported in ARDS?

Sinha P, Matthay MA,
Calfee CS. Is a “Cytokine
Storm” Relevant to
COVID-19? JAMA Intern
Med. Published online
June 30, 2020.
doi:10.1001/jamaintern
med.2020.3313



Review Article: Critical Care Medicine

Severe Sepsis and Septic Shock

Proinflammatory response Excessive inflammation causing collateral damage (tissue injury)
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Denning et al. DAMPs, NETs, and Sepsis

FIGURE 1 | Cross talks between DAMPs and NETs in sepsis.
Sepsis or hypoxia activates immune reactive cells, including
macrophages, and neutrophils. In bacterial sepsis, PAMPs
interact with PRR on macrophages to activate NF-KB,
leading to increased expression of DAMPs (HMGB1, CIRP,
H3) at transcriptional and translational levels. These
intracellular DAMPs are then released extracellularly
through different mechanisms, such as inflammasome-
mediated GSDMD activation, which causes increased
membrane pore formation to release intracellular DAMPs,
or pyroptosis-, necroptosis-, or exosome-mediated
pathways. These DAMPs can in turn recognize PRR on
surrounding neutrophils and activate PAD4, GSDMD to
promote NET formation. NETs components such as H3,
MPO, or DNA can further activate immune cells and
endothelial cells to release increased levels of DAMPs to
augment the inflammatory cascade. In epithelial cells,
extracellular histones derived from NETs promote
cell/tissue injury, resulting in increased severity of ALI.
DAMPs, damage-associated molecular patterns (DAMPs);
NETs, neutrophil extracellular traps; PAMPs, pathogen-
associated molecular patterns; PRR, pattern recognizing
receptors; GSDMD, gasdermin D; HMGB1, high mobility
group box 1; CIRP, cold-inducible RNA-binding protein;
PADA4, peptidoglycan arginine deiminase 4; ALl, acute lung
injury
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Shao B-Z, Xu Z-Q, Han B-Z, Su D-F, Liu C. NLRP3

Schematic illustration of the NLRP3 inflammasome activation. Upon
exposure to pathogen-associated molecular patterns (PAMPs) or danger-associated
molecular patterns (DAMPs), Toll-like receptors (TLRs) are phosphorylated and
subsequently activate NF-kB. In the nucleus, NF-kB promotes the transcription of
NLRP3, prolL-1f3, and proIL-18, which, after translation, remain in the cytoplasm in
inactive forms. Thus, this signal (depicted in red as “Signal 1”) is a priming event. A
subsequent stimulus (shown as “Signal 2” in black) activates the NLRP3 inflammasome
by facilitating the oligomerization of inactive NLRP3, apoptosis-associated speck-like
protein (ASC), and procaspase-1. This complex, in turn, catalyzes the conversion of
procaspase-1 to caspase-1, which contributes to the production and secretion of the
mature IL-1 and IL-18. Three models have been proposed to describe the second step
of inflammasome activation: (1) Extracellular ATP can induce K*/potassium efflux
through a purogenic P2X7-dependent pore, which, leads to the assembly and activation
of the NLRP3 inflammasome. Calcium flux is also involved in this process. (2) PAMPs
and DAMPs trigger the generation of ROS that promote the assembly and activation of
the NLRP3 inflammasome. (3) Phagocytosed environmental irritants form intracellular
crystalline or particulate structures leading to lysosomal rupture (magenta box) and
release of lysosomal contents like cathepsin B. These induce NLRP3 inflammasome
assembly and activation. In addition, other factors and mechanisms have been
implicated in the assembly and activation of the NLRP3 inflammasome, including
mitochondrial damage, autophagic dysfunction, and thioredoxin-interacting protein

(TXNIP).

iInflammasome and its inhibitors; a review. Front Pharmacol.

2015;6. doi:10.3389/fphar.2015.00262



Lupfer CR, Rodriguez A, Kanneganti TD. Inflammasome
Histones from activation by nucleic acids and nucleosomes in sterile
Famagedels inflammation... or is it sterile?. FEBS J.
2017;284(15):2363-2374. ¢0i:10.1111/febs.14076
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Zhao C, Zhao W. NLRP3
Inflammasome-A Key Player in Antiviral
Responses. Front Immunol.
2020;11:211. Published 2020 Feb 18.
doi:10.3389/fimmu.2020.00211

(e) sensing PAMPs
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NLRP2 inflammasome activation

NLRP3 inflammasome activation during viral infections. Activation of the NLRP3 inflammasome requires two signals.
Signal 1 (priming signal): the activation of PRRs, TNFR, or IFNR induces NF-kB activation, triggers the transcription of
NLRP3, pro-caspase-1, pro-1L-10, and pro-1L-18. Signal 2 (activation signal): multiple DAMPs and PAMPs induce
NLRP3 inflammasome assembly and activation. DAMPs include (a) lysosomal or endosomal injury, (b) aberrant ionic
fluxes, (c) mitochondrial injury, and (d) protein aggregates. (e) With the help of DAI/ZBP1, DHX33, OAS, or DDX19A,
NLRP3 is activated by sensing viral proteins and RNA. NLRP3 inflammasome activation leads to the auto-cleavage of
pro-caspase-1. Caspase-1 then mediates the proteolytic process of pro-1L-1p, pro-IL-18, and gasdermin D (GSDMD).
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Atvatai NFB - Farag NS, Breitinger U, Breitinger HG, El Azizi MA.
> IE—E ~ Viroporins and inflammasomes: A key to understand virus-
T — induced inflammation. The International Journal of
Sikashiuie o - L Biochemistry & Cell Biology. 2020;122:105738.
doi:10.1016/j.biocel.2020.105738
Pro-IL-1B Active IL-1p

Signals required for activation and release of IL-1B and IL-18. The first signal can be triggered by various PAMPs or
DAMPS recognized by Toll-like receptor (TLR), IL-1 receptor (IL-1R), IL-18 receptor (IL-18R) or tumor necrosis factor
receptor (TNFR). The activation of such receptors leads to the activation of NF-kB which induces the synthesis of pro-
IL-1B. The second signal is provided by the activation of the inflammasome complex and caspase-1 leading to IL-13
processing. NLRP3 inflammasome detects signs of metabolic stress, including elevated extracellular glucose,
monosodium urate (MSU) crystals, ATP and changes in the intracellular ion composition caused by viral encoded ion
channels; viroporins activity and certain bacterial toxins, such as nigericin and maitotoxi. NLRP3 oligomerization leads
to PYD domain clustering and presentation for homotypic interaction with the PYD- and CARD-containing adaptor
ASC, whose CARD domain in turn recruits the CARD of procaspase-1. Procaspase-1 clustering permits autocleavage
and formation of the active caspase-1 p10/p20 tetramer. Caspase-1 is activated within the inflammasome
multiprotein complex through interaction with ASC (apoptosis-associated speck-like protein containing a carboxy-
terminal CARD), a bipartite adapter protein that bridges NLRs and caspase-1.
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Viroporins activity and activation of inflammasomes. Viroporins activities can be clustered into three main groups
that have been linked to activation of NLRP3 inflammasomes. The first group of viroporins pumps protons and
dissipates proton gradient across trans-golgi network, eg.M2 of influenza A virus. The second group manipulates
Ca?* homeostasis, stimulating Ca?* flux from intracellular storages to the cytosol providing the second signal for
NLRP3 activation and IL-1B production such as 2B of polio and rhino virus. The third group increases mitochondrial
stress and affects ROS production such as 3a of corona virus.
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Zahid A, Li B, Kombe AJK, Jin T, Tao J.

Pharmacological Inhibitors of the NLRP3 Inflammasome.
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Schematic illustration of NLRP3 inflammasome pathway
and potential blockade sites of various pharmacological
inhibitors. The signal 1 or the priming signal is mediated by
pathogenic PAMPs from bacteria or virus, or sterile DAMPs
resulting in NF-kB-dependent upregulation of NLRP3 and
pro-IL-13 expression. The signal 2 or activation signal
mediated by numerous PAMP or DAMP stimulation,
promotes the NLRP3 oligomerization, and recruitment of
ASC and pro-caspase-1, leading to the activation of NLRP3
inflammasome complex. NLRP3 can be activated in
response to extracellular ATP and K* efflux through the
ATP-gated P2X7 channel, in response to cathepsin B release
from damaged lysosomes or in response to reactive oxygen
species (ROS) released from damaged mitochondria. NLRP3
inflammasome activation results in active caspase-1, which
cleaves the proforms of IL-13 and IL-18 into their mature
forms. ASC, apoptosis-associated speck-like protein
containing a C-terminal caspase recruitment domain; ATP,
adenosine triphosphate; BHB, 3-Hydroxybutyrate; CARD,
caspase recruitment domain; DAMPS, danger or damage
associated molecular patterns; IL, interleukin; LRR, leucine-
rich repeat; MNS, methylenedioxy-f-nitrostyrene; NACHT,
central nucleotide-binding and oligomerization; NF-xB,
nuclear factor kappa B; Ori, oridonin; P2X7, P2X purinergic
receptor 7; PAMPS, pathogen associated molecular patterns;
PYD, pyrin domain; ROS, reactive oxygen species; TLR, toll-
like receptor; TR, tranilast.
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Baskar S, Klein A, Zeft A. The Use of IL-1 Receptor Antagonist (Anakinra) in Idiopathic
Recurrent Pericarditis: A Narrative Review. Cardiology Research and Practice.
2016;2016:1-6. doi:10.1155/2016/7840724

Mechanism of action of anakinra.
Both IL-1a and IL-1[3 act through
IL-1 receptor 1 to stimulate the
production of inflammatory
cytokines and TNFa that lead to
the inflammatory cascade. The
inflammasome is a complex of
distinct proteins which together
convert inactive prointerleukin-1(3
to active IL-1B. Environmental
and infectious triggers can
mediate the formation of the
inflammasome. Anakinra blocks
IL-1 receptor 1, antagonizing the
effects of both IL-1a and IL-1[3.
ASC: Apoptosis associated
speck-like protein containing
caspase activation and
recruitment domain, IL:
interleukin, IL-1-R1: interleukin-1
receptor 1, NF-kB: nuclear factor
kappa-light-chain-enhancer of
activated B cells, NLRP3: NOD-
Like Receptor containing pyrin
domain 3.
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Survival and mechanical ventilation-free survival at 21 days Plots show survival (A) and mechanical ventilation-free survival (B) at 21
days of patients with COVID-19, ARDS, and hyperinflammation managed outside the intensive care unit with CPAP and high-dose (n=16).
For mechanical ventilation-free survival (B), death and mechanical ventilation were considered equivalent to treatment failure. COVID-
19=coronavirus disease 2019. ARDS=acute respiratory distress syndrome. CPAP=continuous positive airway pressure. HR=hazard raftio.
anakinra (n=29) or receiving CPAP and standard treatment only
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Colchicine therapy in acute coronary syndrome patients acts on caspase-1 to
suppress NLRP3 inflammasome monocyte activation
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No. (%)

Characteristic Control group (n = 50) Colchicine group (n = 55) Difference (95% CI)?
Aspartate aminotransferase, median 34 (23to 52) 30 (21 to 42) 4 (-2to 10)
(IQR), U/L
Alanine aminotransferase, 35 (18 to 49) 25 (17 to 43) 4.5 (-3 to 12)
median (IQR), U/L
Lactate dehydrogenase, 280 (224 to 405) 251 (196 to 350) 30 (-13to 73)
median (IQR), U/L
Creatine phosphokinase, 80 (55 to 133) 80 (49 to 164) 0(-23t0 23)
median (IQR), U/L
C-reactive protein, 4.0 (1.2t09.5) 3.6 (1.0t0 6.7) 9.5 (-6 to 25)

median (IQR), mg/dL

High-sensitivity cardiac troponin, 0.007 (0.0035 to 0.0185) 0.008 (0.004 to 0.0123) 0.0005 (2.0 to 3.0)

median (IQR), ng/mL

D-dimer, 0.60 (0.40 to 0.52 (0.28to 0.0815 (-0.0082 to
1.01) 0.94) 0.0245)

median (IQR), pa/ml

JAMA Network Open | Infectious DiseasesEffect of Colchicine on Biomarkers and Clinical Outcomes in Patients Hospitalized With COVID-19

Table 1. Baseline Characteristics (continued)

Abbreviations: BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); COVID-19,
coronavirus disease 2019; D-dimer, dimerized plasma fragment D; GFR, glomerular filtration rate; IQR, interquartile range;
NA, not applicable; Pao,, partial pressure of oxygen.

SI conversion factors: To convert alanine al aspartate creatine phosphokinase, and
lactate dehydrogenase to microkatals per liter, multiply by 0.0167; C-reactive protein to milligrams per liter, multiply by
10.0; D-dimer to nanomoles per liter, multiply 5.476; high-sensitivity cardiac troponin to micrograms per liter, multiply by
1.0; glucose to millimoles per liter, multiply by 0.0555; hemoglobin to grams per liter, multiply by 10.0; lymphocyte and
white blood cell count to x10° per liter, multiply by 0.001; platelet count to x10° per liter, multiply by 1.0; and potassium
and sodium to millimoles per liter, multiply by 1.0.

= Values in 95% CI of the difference represent rate differences for categorical variables and differences of the medians
(Hodges-Lehmann estimate) for continuous variables.

» Darunavir or cobicistat, remdesevir, and human interferon alb were not used for any patient.

Figure 2. Kaplan-Meier Curves for Survival From the Primary Clinical End Point
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0.11 (95"/:08;r,0I().015?0.96; P = .046). Kaplan-Meier event-free survival curves are depicted in Figure 2.
Cumulative event-free 10-day survival was 83% vs 97% in the control and colchicine groups,
respectively (Gehan statistic, 4.9; P = .03). Of the 7 patients who met the primary clinical end point
in the control group, 1 (14.3%) needed noninvasive mechanical ventilation (bilevel positive airway
pressure), 5 (71.4%) were intubated and ventilated mechanically (3 [42.9%] died shortly after
intubation), and 1 (14.3%) died suddenly in the ward of cardiorespiratory arrest. The patient in the
colchicine group who met the end point needed invasive mechanical ventilation and died
subsequently in the intensive care unit.

The primary outcome measure of the biochemical phase, hs cTn concentration, increased from a
median (IQR) of 0.073 (0.037 to 0.0149) ng/mL at baseline to a peak median (IQR) value of 0.0084

fﬁ JAMA Network Open. 2020;3(6):€2013136. doi:10.1001/j .2020.13136 June 24, 2020 6/14
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*Fig. 1. Model of BTK-dependent hyper-inflammation in severe COVID-19. Binding of SARS-CoV2 to ACE2 on
respiratory epithelia initiates infection. Hypothetically, macrophages may participate in the COVID-19 inflammatory
response by phagocytic uptake of viral particles or cellular debris containing viral single-stranded RNA (ssRNA).
ssRNA can bind to TLR7 and TLR8, thereby recruiting and activating BTK and MYD88 (51, 52). Downstream of TLR
engagement, BTK-dependent NF-kB activation results in the production of pro-inflammatory cytokines and
chemokines (53), a “cytokine storm” that could increase the recruitment of monocytes/macrophages and neutrophils
during the late phase of severe COVID-19 infection. BTK inhibitors such as acalabrutinib block TLR-dependent NF-
kB activation in macrophages (20, 21), thereby dampening the production of pro-inflammatory mediators, as occurs
in an influenza-induced lung injury model (27). During severe COVID-19, the heightened levels of IL-113 in several
COVID-19 patients (11, 12) indicates the formation of an NLRP3 inflammasome that converts pro-IL-113 to mature
IL-113 (54). BTK binds to and phosphorylates NLRP3, thereby promoting its oligomerization and assembly into an
inflammasome (24-26). BTK inhibitors such as acalabrutinib inhibit inflammasome-mediated production of IL-113, as
observed in a model of influenza-induced lung injury (27). SARS-CoV-2, severe acute respiratory syndrome
coronavirus 2; COVID-19, coronavirus disease 2019; ACE2, angiotensin-converting enzyme 2; TLR, Toll-like
receptor; MyD88, myeloid differentiation primary response 88; BTK, Bruton tyrosine kinase; NF-kB, nuclear factor
kappa B; NLRP3, NLR family pyrin domain containing 3; ASC, Apoptosis-associated speck-like protein containing a
caspase recruitment domain; ORF3a, open reading frame 3a; IFN-y, interferon gamma; IL, interleukin; IL-12R, IL-12
receptor; CCL2, C-C motif chemokine ligand 2; CXCL1, C-X-C motif chemokine ligand 1; CXCR2, C-X-C motif
chemokine receptor 2.

*First release: 5 June 2020immunology.sciencemag.org(Page numbers not final at time of first release) 12
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A cascade of injury
A new hypothesis suggests SARS-CoV-2
attacks the endothelial cells that line the
blood vessels surrounding the lungs' air
sacs, or alveoli. A spiral of damage can

Alveolar
epithelial cell

messenger molecules that cause wide-
spread inflammation.

Tight junctions

Endothelial cell

Severe COVID-19 e e
1 Vascular leakage : PR S

2 Clotting
3 Inflammation

6/5/2020 Science Magazine - June 5, 2020 -
Blood vessel injury may spur disease’s fatal
second phase including interleukins, which
raise local blood pressure and weaken cell
junctions. Damage to the endothelial cells also

exposes the membrane underneath them.

https://www.sciencemagazinedigital.org/sciencemagazine/05 june 2020
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Endotheliopathy in COVID-19-
associated coagulopathy: evidence
from a single-centre, cross-
sectional study

George Goshua, MD, Alexander B Pine, MD, Matthew L
Meizlish, MPhil, C-Hong Chang, PhD, Hanming Zhang, PhD,
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Alfred | Lee, MID

The Lancet Haematology

DOI: 10.1016/52352-3026(20)30216-7




1 X e .
L - -"
X e b ’ VWF multimers degradation
x o x A “"..- Oclust (disul:itn bonds cleavage)
X 4 . P e .. Platelet rich thrombus ‘(%_ s ©
W " x .
B Subsndothelium

N-Acetylcysteine VWF Fibrinogen Collagen
NN % [

VWF multimers GplibMia Gplba Endothedial cell

Red blood cell Platelet Fibrin

Schematic representation of the main findings.A, Schematic representation. B, N-acetylcysteine reduces
the disulfide bonds of the von Willebrand Factor multimers that maintain platelets linked in arterial thrombi,
thereby inducing thrombus dissolution. VWF indicates von Willebrand Factor.
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v Sara Martinez de Lizarrondo. Circulation. Potent Thrombolytic Effect
of N-Acetylcysteine on Arterial Thrombi, Volume: 136, Issue: 7,
Pages: 646-660, DOI: (10.1161/CIRCULATIONAHA.117.027290) © 2017 American Heart Association, Inc.
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C] Cleavage of VWF by ADAMTS13 is prevented by the following mechanisms

1) Binding of thrombospondin-1 released from a-granules of activated platelets to A2-A3 domain of VWF harboring the proteolytic
cleavage site of ADAMTS13

2) Binding of a-defensins released from neutrophils to A2 domain of VWF

3) Oxidation of Met 1606 residue in the ADAMTS13 cleavage site of VWF by reactive oxygen species

4) Proteolytic cleavage of ADAMTS13 by granulocyte elastases, plasmin, and thrombin that are elevated in inflammatory conditions

Katneni, U.K,; Alexaki, A.; Hunt, R,; Schiller, T; DiCuccio, M.; Buehler, PW.,; Ibla, J.C.; Kimchi-Sarfaty, C.
Consumptive Coagulopathy and Thrombosis during Severe COVID-19 Infection: Potential
Involvement of VWF/ADAMTS13. Preprints 2020, 2020050385 (doi:
10.20944/preprints202005.0385.v1)
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NAC inhibits the ability of VWF to bind platelets and collagen.
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NAC inhibits ADP- and collagen-induced platelet aggregation.
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Time to thrombus resolution in calcium ionophore—treated mesenteric venules. Upon calcium ionophore stimulation of
the mesenteric venules, platelets immediately began to accumulate on the vessel wall. Adhesion was monitored, and the time
required for the fluorescence value to return to baseline was measured. Platelet adhesion persisted longer in mice deficient

in ADAMTS13 than in wild-type mice. NAC treatment in either ADAMTS13~ or wild-type mice significantly shortened the
time required for platelet adhesion to return to baseline. The mean (z SEM) values for time to thrombus resolution were as
follows. ADAMTS13-: control, 10.4 + 1.2 minutes; NAC, 5.1 + 0.3 minutes; wild type: control, 6.5 + 0.5 minutes; NAC, 3.8
+ 0.3 minutes. 10 mice were examined in each group. The data were analyzed using Student’s t test, and the

adjusted P values are indicated.
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NAC has no effect on bleeding times in mice. Tail-vein bleeding times were examined in 6- to 8-week-old wild-type
C57BL/6 mice. Either PBS (control) or NAC (0.8 mg/g) was administered through the tail vein 30 minutes or 8 hours before
the bleeding time was determined. Data represent mean = SEM. The number of mice examined in each group was 5 for A and
10 for B. No significant differences in bleeding times were observed between treated and untreated mice. The data were
analyzed using the Mann-Whitney nonparametric procedure. The adjusted P values for the comparisons between control and
NAC-treated animals were 0.47 and 0.86, for the 30 minute and 8 hour analyses, respectively.
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mediated inflammation
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for a special viral
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Therapeutic Implications of a new understanding of the pathophysiology of COVID 19

* SARS CoV-2 does not cause a problem in the majority of humans because they are like BATS ??7?7?

* Inall humans the viral replication is eventually controlled by the host immune systems

e Anti-Virals relevant only in early stages and probably need combination of antivirals with different sites of action

* |In a minority of individuals there is an exaggerated NLRP 3 response reminiscent of the hereditary inflammatory
disorders like Familial Mediterranean Fever or other Cryopyrin Associated Periodic Syndromes (Familial Cold
autoinflammatory syndrome; Muckle-Wells Syndrome; Neonatal onset multisystem inflammatory disease)

* Young individuals Multi System Inflammatory Disorder including Kawasaki Disease is mediated by NLRP 3

* Systemic Vasculitis due to direct infection and activation of endothelial inflammation is common

* Initial stages have severe platelet aggregation and platelet thrombi that cannot be controlled due to deficiency of
Von-Willebrand factor proteases this serves as the initiator of VTE

* |n late stages ALl and AKI is mediated by the terminal attack complex of complement with multiple triggers
causing complement activation and a concomitant deficiency of complement control proteins

The Yeldandi Protocol: Look for markers of inflammation in all symptomatic individuals : Lymphopenia; High CRP; High
LDH; High Ferritin; If Oxygen saturation low look for D dimer, evidence for TMA

Early stage : Colchicine; NAC; Famotidine + Antiviral if possible but not imperative

Moderate illness: Colchicine; NAC; Famotidine; Dexamethasone; Atorvastatin of 40 mg daily

Hypoxic lliness: Colchicine consider Anakinra; Famotidine; NAC; Atorvastatin, Dexamethasone. Add Rivaroxaban if D dimer
high

Refractory Hypoxemia with LDH > 500 and Platelets decreased 25% below baseline Eculizumab would be ideal to address
complement induced ALl and AKI, Can Fresh Frozen Plasma help to replace ADAMTS 13 and Complement control proteins?
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