

KENDRIYA VIDYALAYA SANGATHAN JAMMU REGION

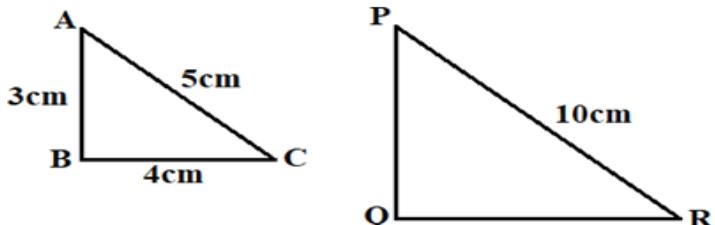
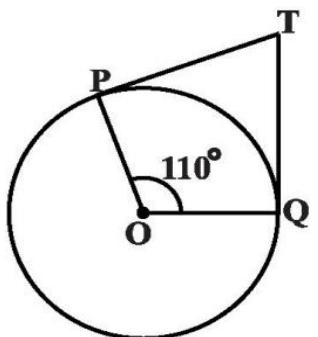
PREBOARD- 1 (2025-26) SET-1

Class – X

Maximum Marks: 80

Subject- Basic Maths (241)

Time Allowed: 3 Hours



General Instructions:

Read the following instructions carefully and follow them:

1. This question paper contains 38 questions. All questions are compulsory.
2. This Question Paper is divided into 5 Sections A, B, C, D and E.
3. In Section A, Question numbers 1-18 are multiple choice questions (MCQs) and question no. 19 and 20 are Assertion-Reason based questions of 1 mark each.
4. In Section B, Question numbers 21-25 are very short answer (VSA) type questions, carrying 02 marks each.
5. In Section C, Question numbers 26-31 are short answer (SA) type questions, carrying 03 marks each.
6. In Section D, Question numbers 32-35 are long answer (LA) type questions, carrying 05 marks each.
7. In Section E, Question numbers 36-38 are case study-based questions carrying 4 marks each with subparts of the values of 1, 1 and 2 marks each respectively.
8. There is no overall choice. However, an internal choice in 2 questions of Section B, 2 questions of Section C and 2 questions of Section D has been provided. An internal choice has been provided in all the 2 marks questions of Section E.
9. Draw neat and clean figures wherever required. Take $\pi = 22/7$ wherever required if not stated.
10. Use of calculators is not allowed.

SECTION – A (1 MARKS EACH)

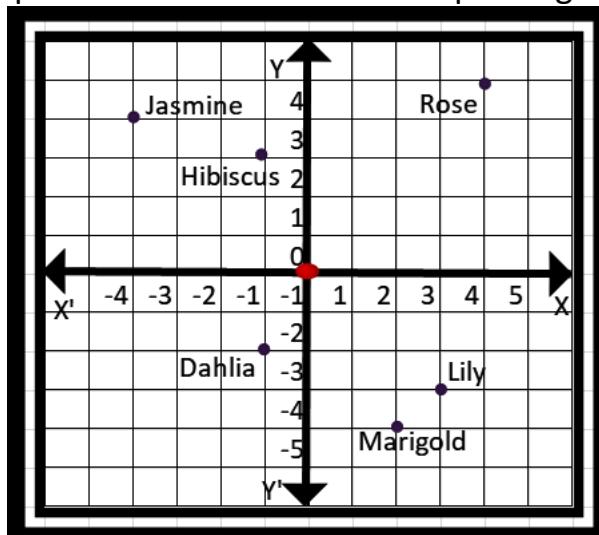
S No	CHOOSE THE CORRECT OPTION :	Marks
1.	Which of the following is not a rational number? (a) $\sqrt{6}$ (b) $\sqrt{9}$ (c) $\sqrt{25}$ (d) $\sqrt{36}$	1
2.	The number of polynomials having – 2 and 5 as its zeroes is (a) one (b) two (c) three (d) Infinitely many	1
3.	The pair of equations $x + 2y + 5 = 0$ and $-3x - 6y + 1 = 0$ have (a) infinite number of solutions (b) unique solution (c) no solution (d) one solution	1
4.	Which of the following is a solution of the quadratic equation $2x^2 + x - 6 = 0$?	1

	(a) $x=-2$ (b) $x=-12$ (c) $x = -\frac{3}{2}$ (d) $x=-3$	
5.	The value of x for which $2x, (x+10)$ and $(3x+2)$ are the three consecutive terms of an AP is a) 6 b) -6 c) $-2d/2$	1
6.	Given first term of A.P is 5 and common difference is 2. Find 10 th term of the A.P. a) 22 b) 23 c) 24 d) 26	1
7	If $\Delta ABC \sim \Delta PQR$, then perimeter of the triangle PQR (in cm) is a) 12 b) 24 c) 18 d) 20	
8	The point P(1, 2) divides the join of A(-2, 1) and B(7, 4) are in the ratio of (a) 3:2 (b) 2:3 (c) 2:1 (d) 1:2	1
9	The distance between the points A(2, -3) and B(2, 2) is (a) 2 units (b) 4 units (c) 5 units (d) 3 units	1
10	$(\sec A + \tan A)(1 - \sin A) =$ (a) $\sec A$ (b) $\sin A$ (c) $\cosec A$ (d) $\cos A$	1
11	In the figure, if TP and TQ are the two tangents to a circle with centre O so that $\angle POQ = 110^\circ$, then $\angle PTQ$ is equal to? (a) 60° (b) 70° (c) 80° (d) 90°	
12	The length of a tangent from a point A at a distance 5 cm from the centre of the circle is 4 cm. The radius of the circle is: (a) 3 cm (b) 5 cm (c) 7 cm (d) 10 cm	1
13	If $P(E) = 0.07$, then what is the probability of 'not E'? (a) 0.93 b) 0.95 (c) 0.89 (d) 0.90	1
14	The curved surface area of a sphere of radius 7 cm is: (a) 516 cm^2 (b) 616 cm^2 (c) 716 cm^2 (d) 880 cm^2	1
15	Two concentric circles are of radii 5 cm and 3 cm. The length of the chord of the	1

	<p>larger circle which touches the smaller circle is:</p> <p>(a) 8 cm (b) 10 cm (c) 12 cm (d) 18 cm</p>													
16	<p>The mean of the following frequency distribution is</p> <table border="1"> <tr> <td>C.I</td><td>0–10</td><td>10–20</td><td>20–30</td><td>30–40</td><td>40–50</td></tr> <tr> <td>F</td><td>12</td><td>16</td><td>6</td><td>7</td><td>9</td></tr> </table> <p>(a) 12 (b) 16 (c) 22 (d) 20</p>	C.I	0–10	10–20	20–30	30–40	40–50	F	12	16	6	7	9	1
C.I	0–10	10–20	20–30	30–40	40–50									
F	12	16	6	7	9									
17	<p>If the mode of 12, 16, 19, 16, x, 12, 16, 19, 12 is 16, then the value of x is</p> <p>(a) 12 (b) 16 (c) 19 (d) 18</p>	1												
18	<p>A bag has 4 red balls and 2 yellow balls. A ball is drawn from the bag without looking into the bag. What is probability of getting a yellow ball?</p> <p>(a) $\frac{1}{6}$ (b) $\frac{2}{3}$ (c) $\frac{1}{3}$ (d) 1</p>	1												
	<p>Direction for questions 19 & 20: In question numbers 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option.</p>													
19	<p>Assertion: If $x = 2 \sin^2 \theta$ and $y = 2 \cos^2 \theta + 1$ then the value of $x + y = 3$.</p> <p>Reason : For any value of θ, $\sin^2 \theta + \cos^2 \theta = 1$</p> <p>(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).</p> <p>(b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).</p> <p>(c) Assertion (A) is true but Reason (R) is false.</p> <p>(d) Assertion (A) is false but Reason (R) is true.</p>	1												
20	<p>Assertion : D and E are points on the sides AB and AC respectively of a ΔABC such that $DE \parallel BC$ then the value of x is 11, when $AD = 4\text{cm}$, $DB = (x - 4)\text{ cm}$, $AE = 8\text{cm}$ and $EC = (3x - 19)\text{ cm}$.</p> <p>Reason : If a line divides any two sides of a triangle in the same ratio then it is parallel to the third side.</p> <p>(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).</p> <p>(b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).</p> <p>(c) Assertion (A) is true but Reason (R) is false.</p> <p>(d) Assertion (A) is false but Reason (R) is true.</p>	1												
	Section-B													
21	Show that the number $2 \times 5 \times 7 \times 11 + 11 \times 13$ is a composite number.	2												

	OR Find the smallest number which is divisible by both 306 and 657.	
22	If -2 is a zero of the polynomial $3x^2 + 4x + 2k$ then find the value of k .	2
23	Find the nature of roots of the quadratic equation $x^2 + 4x - 3\sqrt{2} = 0$.	2
24	Prove that "The lengths of tangents drawn from an external point to a circle are equal."	2
25	If $\cos\theta = 0.6$, show that $(5\sin\theta - 3\tan\theta) = 0$ OR If $A = 45^\circ$, verify that $\sin 2A = 2\sin A \cos A$	2
	Section-C (3 marks each)	
26	There is a circular path around a sports field. Sonia takes 18 minutes to drive one round of the field, while Ravi takes 12 minutes for the same. Suppose they both start at the same point and at the same time, and go in the same direction. After how many minutes will they meet again at the starting point?	3
27	Draw the graphs of the equations: $4x - y - 8 = 0$; $2x - 3y + 6 = 0$ Also determine the vertices of the triangle formed by the lines and x -axis. OR The taxi charges in a city consist of a fixed charge together with the charge for the distance covered. For a distance of 10 km, the charge paid is Rs 105 and for a journey of 15 km, the charge paid is Rs 155. What are the fixed charges and the charge per km? How much does a person have to pay for travelling a distance of 25 km?	3
28	Find the sum of first 50 odd natural numbers	3
29	Prove that $\sec^4 A (1 - \sin^4 A) - 2 \tan^2 A = 1$	3

30	<p>If the mean of the following distribution is 54, find the value of p.</p> <table border="1"> <thead> <tr> <th>C.I</th><th>0-20</th><th>20-40</th><th>40-60</th><th>60-80</th><th>80-100</th></tr> </thead> <tbody> <tr> <td>Frequency</td><td>7</td><td>p</td><td>10</td><td>9</td><td>13</td></tr> </tbody> </table> <p>OR</p> <p>Calculate mode of the following data:</p> <table border="1"> <thead> <tr> <th>Marks</th><th>0-20</th><th>20-40</th><th>40-60</th><th>60-80</th><th>80-100</th></tr> </thead> <tbody> <tr> <td>No. of students</td><td>5</td><td>10</td><td>12</td><td>6</td><td>3</td></tr> </tbody> </table>	C.I	0-20	20-40	40-60	60-80	80-100	Frequency	7	p	10	9	13	Marks	0-20	20-40	40-60	60-80	80-100	No. of students	5	10	12	6	3	3
C.I	0-20	20-40	40-60	60-80	80-100																					
Frequency	7	p	10	9	13																					
Marks	0-20	20-40	40-60	60-80	80-100																					
No. of students	5	10	12	6	3																					
31	Show that parallelogram circumscribing a circle is a rhombus.	3																								
	Section-D (5 marks each)																									
32	<p>A train travels 360 km at a uniform speed. If the speed had been 5 km/h more, it would have taken 1 hour less for the same journey. Find the speed of the train.</p> <p>OR</p> <p>The difference of the squares of two numbers is 180. The square of the smaller number is 8 times the larger number. Find the two numbers.</p>	5																								
33	State and prove Basic Proportionality theorem.	5																								
34	<p>A solid consisting of a right circular cone of height 120 cm and radius 60 cm standing on a hemisphere of radius 60 cm is placed upright in a right circular cylinder full of water such that it touches the bottom. Find the volume of water left in the cylinder, if the radius of the cylinder is 60 cm and its height is 180 cm.</p>	5																								
35	<p>The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 50 m high, find the height of the building.</p> <p>OR</p> <p>From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower.</p>	5																								
	Section- E (CASE STUDY QUESTIONS)																									
36	<p>A, B, C, D and E are five friends. They prepared some numbered cards with labels from 11 to 60 and then they put all the number cards in the empty box. In this game, every friend was asked to pick the card randomly and after each draw, card was replaced back in the box.</p>																									


(a) Find the probability that the number on the drawn card is an odd number.
 (b) Find the probability that the number on the drawn card is divisible by 5.
 (c) Find the probability that the number on the drawn card is a perfect square number.

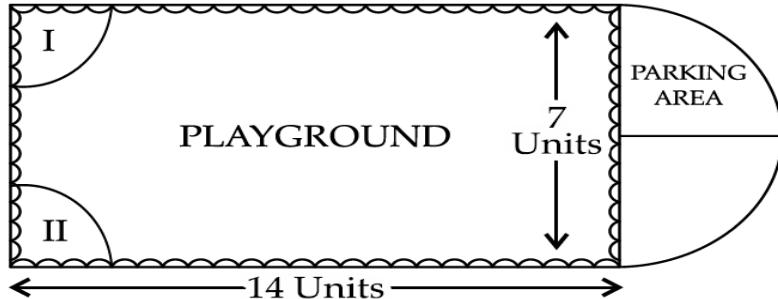
OR

Find the probability that the number on the drawn card is a prime number less than 20.

(1M)
 (1M)
 (2M)

37 Cartesian coordinate system is considered inside the area of a garden to understand the heights, distances and various other mathematical measurement parameters. The above positions marked are for the plants grown in the garden.

Answer the following questions using the above information.


a) Find co-ordinates of Lily.
 b) Are points of Rose, Lily and Marigold collinear?
 c) What is the distance between Rose and Jasmine?

(1M)
 (1M)
 (2M)

OR

Find co-ordinates of point which divides line segment between points of Hibiscus and Dahlia in 1:1.

38 Governing council of a local public development authority of Dehradun decided to build an adventurous playground on the top of a hill, which will have adequate space for parking.
 After survey, it was decided to build rectangular playground, with a semi-circular area allotted for Parking at one end of the playground. The length and breadth of the rectangular playground are 14 units and 7 units, respectively. There are two quadrants of radius 2 units on one side for special seats.

Based on the above information, answer the following questions:

(a) What is the total perimeter of the parking area?
(b) What is the total area of parking and the two quadrants?

OR

What is the ratio of area of playground to the area of parking area?

c) Find the cost of fencing the playground and parking area at the rate of Rs.2 per unit.

1M

1M

2M